首页 > 其他 > 详细

Deep Learning Toolboxs

时间:2017-06-03 09:17:54      阅读:239      评论:0      收藏:0      [点我收藏+]

一些好用的 Deep learning toolboxs

DeepLearningToolbox

MATLAB实现,能够使用CPU或GPU。GPU运算用gpumat实现。改动内核代码很方便
支持主要的 deep structures
https://github.com/rasmusbergpalm/DeepLearnToolbox

Cuda-convnet

Hinton’s Group 公布的 toolbox,也是其NIPS2012工作的开发工具。
用C++/CUDA实现的,很高效。外壳是Python语言,通过简单的改动配置文件来制定网络结构,很易于使用。Linux/Windows下均可成功编译执行。


支持CNN的local结构,dropout。
https://github.com/bitxiong/cuda-convnet

Caffe

Berkeley 视觉和学习组开发的 deeplearning 框架
相同用C++/CUDA实现的。支持Python 和 Matlab 的外壳。Linux/Windows下均可成功编译执行
不支持locally-connected covonlution layer
https://github.com/BVLC/caffe

Convnet

Hinton’s Group最新公布Deeplearning toolbox。内核和 cuda-convnet 类似。最大的亮点是支持多GPU结构
https://github.com/TorontoDeepLearning/convnet

Deep Learning Toolboxs

原文:http://www.cnblogs.com/llguanli/p/6936165.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!