1 3 2 1 2 1 3 0
6Hintpossible patterns are ?, 1, 2, 3, 1→2, 2→3
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#define LL long long
using namespace std;
const int MAXN = 55 + 10;
const int mod = 2015;
int n, m;
struct Matrix
{
int m[MAXN][MAXN];
Matrix(){memset(m, 0, sizeof(m));}
Matrix operator * (const Matrix &b)const
{
Matrix res;
for(int i=1;i<=n+1;i++)
{
for(int j=1;j<=n+1;j++)
{
for(int k=1;k<=n+1;k++)
{
res.m[i][j] = (res.m[i][j] + m[i][k] * b.m[k][j]) % mod;
}
}
}
return res;
}
};
Matrix pow_mod(Matrix a, int b)
{
Matrix res;
for(int i=1;i<=n+1;i++) res.m[i][i] = 1;
while(b)
{
if(b & 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
Matrix a, b;
scanf("%d%d", &n, &m);
for(int i=1;i<=n+1;i++) a.m[i][n+1] = 1;
for(int i=1;i<=n;i++)
{
int x, k;scanf("%d", &k);
for(;k--;)
{
scanf("%d", &x);
a.m[i][x] = 1;
}
}
a = pow_mod(a, m);
int ans = 0;
for(int i=1;i<=n+1;i++) ans = (ans + a.m[i][n+1]) % mod;
printf("%d\n", ans);
}
return 0;
}HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)
原文:http://www.cnblogs.com/lxjshuju/p/6922509.html