首页 > 其他 > 详细

bzoj 1430: 小猴打架

时间:2017-05-28 09:38:57      阅读:323      评论:0      收藏:0      [点我收藏+]

1430: 小猴打架

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 634  Solved: 461
[Submit][Status][Discuss]

Description

一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过N-1次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程。

Input

一个整数N。

Output

一行,方案数mod 9999991。

Sample Input

4

Sample Output

96

HINT

50%的数据N<=10^3。
100%的数据N<=10^6。

 

根据prufer序列,每个点的度数没有限制

所以n个点的prufer序列有n^(n-2)z种

对应n^(n-2)种树的形态

每种树有n-1条边,有(n-1)!种构造方式

所以ans=n^(n-2)  * (n-1)!

#include<cstdio>
#include<iostream>
#define mod 9999991
using namespace std;
long long ans=1;
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n-2;i++) ans=ans*n%mod;
    for(int i=1;i<=n-1;i++) ans=ans*i%mod;
    cout<<ans;
}

 

 

bzoj 1430: 小猴打架

原文:http://www.cnblogs.com/TheRoadToTheGold/p/6915000.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!