首页 > 其他 > 详细

Hoeffding's inequality

时间:2017-05-07 12:32:42      阅读:321      评论:0      收藏:0      [点我收藏+]

Let $\{Y_i: i\in J\}$ be zero mean independent complex-valued random variables satisfying $|Y_i|\le R.$ Then for all $c>0,$

$$P\left(|\sum_{i\in J}Y_i|>c\right)\le 4\exp\left(\frac{-c^2}{4R^2|J|}\right).$$

See, Hoeffding, W, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Asociation, 58 (1963):13-30

or P. Shmerkin  Salem sets with no arithmetic progressions, international Mathematiics Research Notices.

Hoeffding's inequality

原文:http://www.cnblogs.com/jinjun/p/6820240.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!