C++利用先序和中序(或中序和有序)创建二叉树
对于二叉树,存在两个基本的性质。
1、已知先序和中序遍历的序列,可以唯一确定一颗二叉树。
2、已知中序和后续遍历的序列,可以唯一确定一个二叉树。
下面给出其C++的具体实现:
1 #include <iostream> 2 using namespace std; 3 4 typedef char ElemType; 5 6 //二叉树链式结构实现 7 typedef struct BinaryTreeNode 8 { 9 ElemType data; 10 BinaryTreeNode *left; 11 BinaryTreeNode *right; 12 }BinaryTreeNode, *tree; 13 14 /*先序遍历二叉树的节点*/ 15 void PreOrderTraverse (const tree &T); 16 /*中序遍历二叉树的节点*/ 17 void InOrderTraverse (const tree &T); 18 /*后续遍历二叉树的节点*/ 19 void PostOrderTraverse (const tree &T); 20 /*按照先序创建二叉树,本例中我们将每个二叉树的节点的空指针引出一个虚节点(代表该节点后面不会再有新的节点, 21 * 即该子书生长结束),其值为一特值,此处使用‘#‘。因此我们在创建子树时输入的先序序列为AB#D##C##,其只有四个节点 22 * 如下所示: 23 * A A 24 * / \ / 25 * 普通二叉树: B C 扩展二叉树: B C 26 * \ / \ / 27 * D # D # # 28 * / 29 * # # 30 */ 31 /*根据二叉树的先序和中序遍历序列,创建二叉树。 32 * 核心思想:根据先序序列的第一个记录为跟节点,在中序序列中查找其跟节点的位置, 33 * 中序序列中的根节点左边的为中序左子树,右边的为中序右子树,由于左子树(或者右子树) 34 * 在先序和中序中的长度相同,因此可以获得先序左子树和先序右子树,根据该根节点创建二 35 * 叉树的节点,并将新获取的先序(中序)左右子树递归的创建二叉树。 A 36 * 实例中先序序列:ABCDEF 二叉树结构: / 37 * 中序序列:CBAEDF B D 38 * 后序序列:CBEFDA / / 39 * presequence:先序序列 C E F 40 * insequence:中序序列*/ 41 void CreateTreeByPI (tree &T, std::string presequence, std::string insequence); 42 /*与根据先序和中序遍历序列创建二叉树相似*/ 43 void CreateTreeByIP (tree &T, std::string insequence, std::string postsequence); 44 void CreateTree (tree &T); 45 46 void PreOrderTraverse (const tree &T) 47 { 48 if (!T)//空树 49 { 50 return; 51 } 52 cout << T->data << " "; 53 PreOrderTraverse (T->left); 54 PreOrderTraverse (T->right); 55 } 56 57 void InOrderTraverse (const tree &T) 58 { 59 if (!T)//空树 60 { 61 return; 62 } 63 InOrderTraverse (T->left); 64 cout << T->data << " "; 65 InOrderTraverse (T->right); 66 } 67 68 void PostOrderTraverse (const tree &T) 69 { 70 if (!T)//空树 71 { 72 return; 73 } 74 PostOrderTraverse (T->left); 75 PostOrderTraverse (T->right); 76 cout << T->data << " "; 77 } 78 79 void CreateTree (tree &T) 80 { 81 char input; 82 cout << "Please input a char: "; 83 cin >> input; 84 if (‘#‘ == input)//默认‘#‘为结束标示 85 { 86 return; 87 } 88 else 89 { 90 T = new BinaryTreeNode; 91 T->data = input; 92 if (!T)//new failed 93 { 94 return; 95 } 96 CreateTree (T->left); 97 CreateTree (T->right); 98 } 99 } 100 101 102 void CreateTreeByPI (tree &T, std::string presequence, std::string insequence) 103 { 104 if (0 == presequence.length () || 105 (presequence.length () != insequence.length ())) 106 { 107 return; 108 } 109 char rootNode = presequence[0]; 110 int index = insequence.find (rootNode); 111 std::string lchild_insequence = insequence.substr (0, index); 112 std::string rchild_insequence = insequence.substr (index + 1, insequence.length () - index); 113 int lchild_length = index; 114 int rchild_length = rchild_insequence.length (); 115 std::string lchild_presequence = presequence.substr (1, lchild_length); 116 std::string rchild_presequence = presequence.substr (1 + lchild_length, rchild_length); 117 118 T = new BinaryTreeNode; 119 if (T) 120 { 121 T->data = rootNode; 122 CreateTreeByPI (T->left, lchild_presequence, lchild_insequence); 123 CreateTreeByPI (T->right, rchild_presequence, rchild_insequence); 124 } 125 } 126 127 128 void CreateTreeByIP (tree &T, std::string insequence, std::string postsequence) 129 { 130 if (0 == insequence.length () || 131 insequence.length () != postsequence.length ()) 132 { 133 return; 134 } 135 char rootNode = postsequence[postsequence.length () - 1]; 136 int index = insequence.find (rootNode); 137 std::string lchild_insequence = insequence.substr (0, index); 138 std::string rchild_insequence = insequence.substr (index + 1, insequence.length () - index); 139 int lchild_length = index; 140 int rchild_length = rchild_insequence.length (); 141 std::string lchild_postsequence = postsequence.substr (0, lchild_length); 142 std::string rchild_postsequence = postsequence.substr (lchild_length, rchild_length); 143 144 T = new BinaryTreeNode; 145 if (T) 146 { 147 T->data = rootNode; 148 CreateTreeByIP (T->left,lchild_insequence, lchild_postsequence); 149 CreateTreeByIP (T->right, rchild_insequence, rchild_postsequence); 150 } 151 } 152 153 int main () 154 { 155 tree T1; 156 string pre = "ABCDEF"; 157 string in = "CBAEDF"; 158 string post = "CBEFDA"; 159 CreateTreeByPI (T1, pre, in); 160 cout << "树T1的后序遍历为: "; 161 PostOrderTraverse (T1); 162 163 tree T2; 164 CreateTreeByIP (T2, in, post); 165 cout << "\n"; 166 cout << "树T2的前序遍历为: "; 167 PreOrderTraverse (T2); 168 return 0; 169 }
运行结果如下:
树T1的后序遍历为: C B E F D A
树T2的前序遍历为: A B C D E F
原文:http://www.cnblogs.com/uestcjoel/p/6492615.html