Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import threadingimport time def show(arg): time.sleep(1) print ‘thread‘+str(arg) for i in range(10): t = threading.Thread(target=show, args=(i,)) t.start() print ‘main thread stop‘ |
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == ‘__main__‘: t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
线程锁(Lock、RLock【推荐】)
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time gl_num = 0 def show(arg): global gl_num time.sleep(1) gl_num +=1 print gl_num for i in range(10): t = threading.Thread(target=show, args=(i,)) t.start() print ‘main thread stop‘
#!/usr/bin/env python
#coding:utf-8
import threading
import time
gl_num = 0
lock = threading.RLock()
def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release()
for i in range(10):
t = threading.Thread(target=Func)
t.start()
信号量(Semaphore)
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。
import threading,time
def run(n):
semaphore.acquire()
time.sleep(1)
print("run the thread: %s" %n)
semaphore.release()
if __name__ == ‘__main__‘:
num= 0
semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
for i in range(20):
t = threading.Thread(target=run,args=(i,))
t.start()
事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import threadingdef do(event): print ‘start‘ event.wait() print ‘execute‘event_obj = threading.Event()for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start()event_obj.clear()inp = raw_input(‘input:‘)if inp == ‘true‘: event_obj.set() |
条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
import threading
def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release()
if __name__ == ‘__main__‘:
con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()
while True:
inp = input(‘>>>‘)
if inp == ‘q‘:
break
con.acquire()
con.notify(int(inp))
con.release()
def condition_func(): ret = False inp = input(‘>>>‘) if inp == ‘1‘: ret = True return ret def run(n): con.acquire() con.wait_for(condition_func) print("run the thread: %s" %n) con.release() if __name__ == ‘__main__‘: con = threading.Condition() for i in range(10): t = threading.Thread(target=run, args=(i,)) t.start()
Timer
定时器,指定n秒后执行某操作
|
1
2
3
4
5
6
7
8
|
from threading import Timerdef hello(): print("hello, world")t = Timer(1, hello)t.start() # after 1 seconds, "hello, world" will be printed |
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading class ThreadPool(object): def __init__(self, max_num=20): self.queue = Queue.Queue(max_num) for i in xrange(max_num): self.queue.put(threading.Thread) def get_thread(self): return self.queue.get() def add_thread(self): self.queue.put(threading.Thread) """ pool = ThreadPool(10) def func(arg, p): print arg import time time.sleep(2) p.add_thread() for i in xrange(30): thread = pool.get_thread() t = thread(target=func, args=(i, pool)) t.start() """
#!/usr/bin/env python # -*- coding:utf-8 -*- import queue import threading import contextlib import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num, max_task_num = None): if max_task_num: self.q = queue.Queue(max_task_num) else: self.q = queue.Queue() self.max_num = max_num self.cancel = False self.terminal = False self.generate_list = [] self.free_list = [] def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数) :return: 如果线程池已经终止,则返回True否则None """ if self.cancel: return if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: self.generate_thread() w = (func, args, callback,) self.q.put(w) def generate_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.start() def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.currentThread() self.generate_list.append(current_thread) event = self.q.get() while event != StopEvent: func, arguments, callback = event try: result = func(*arguments) success = True except Exception as e: success = False result = None if callback is not None: try: callback(success, result) except Exception as e: pass with self.worker_state(self.free_list, current_thread): if self.terminal: event = StopEvent else: event = self.q.get() else: self.generate_list.remove(current_thread) def close(self): """ 执行完所有的任务后,所有线程停止 """ self.cancel = True full_size = len(self.generate_list) while full_size: self.q.put(StopEvent) full_size -= 1 def terminate(self): """ 无论是否还有任务,终止线程 """ self.terminal = True while self.generate_list: self.q.put(StopEvent) self.q.queue.clear() @contextlib.contextmanager def worker_state(self, state_list, worker_thread): """ 用于记录线程中正在等待的线程数 """ state_list.append(worker_thread) try: yield finally: state_list.remove(worker_thread) # How to use pool = ThreadPool(5) def callback(status, result): # status, execute action status # result, execute action return value pass def action(i): print(i) for i in range(30): ret = pool.run(action, (i,), callback) time.sleep(5) print(len(pool.generate_list), len(pool.free_list)) print(len(pool.generate_list), len(pool.free_list)) # pool.close() # pool.terminate()
更多参见:twisted.python.threadpool
上下文管理:https://docs.python.org/2/library/contextlib.html
from contextlib import contextmanager @contextmanager def myopen(file_path, mode): # 第一步执行 f = open(file_path,mode, encoding=‘utf-8‘) try: # f 即是下面的 file_obj 句柄 yield f finally: # 第三步执行 f.close() with myopen(‘index.html‘,‘r‘) as file_obj: # 第二步执行 print(file_obj.readline())
|
1
2
3
4
5
6
7
8
9
10
|
from multiprocessing import Processimport threadingimport time def foo(i): print ‘say hi‘,i for i in range(10): p = Process(target=foo,args=(i,)) p.start() |
注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。
进程数据共享
进程各自持有一份数据,默认无法共享数据
#!/usr/bin/env python #coding:utf-8 from multiprocessing import Process from multiprocessing import Manager import time li = [] def foo(i): li.append(i) print ‘say hi‘,li for i in range(10): p = Process(target=foo,args=(i,)) p.start() print ‘ending‘,li
#方法一,Array
from multiprocessing import Process,Array
temp = Array(‘i‘, [11,22,33,44])
def Foo(i):
temp[i] = 100+i
for item in temp:
print i,‘----->‘,item
for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
#方法二:manage.dict()共享数据
from multiprocessing import Process,Manager
manage = Manager()
dic = manage.dict()
def Foo(i):
dic[i] = 100+i
print dic.values()
for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
p.join()
#方法三:Queue共享数据
from multiprocessing import Process, Queue
def f(i,q):
print(i,q.get())
if __name__ == ‘__main__‘:
q = Queue()
q.put("h1")
q.put("h2")
q.put("h3")
for i in range(10):
p = Process(target=f, args=(i,q,))
p.start()
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。
#!/usr/bin/env python # -*- coding:utf-8 -*- from multiprocessing import Process, Array, RLock def Foo(lock,temp,i): """ 将第0个数加100 """ lock.acquire() temp[0] = 100+i for item in temp: print i,‘----->‘,item lock.release() lock = RLock() temp = Array(‘i‘, [11, 22, 33, 44]) for i in range(20): p = Process(target=Foo,args=(lock,temp,i,)) p.start()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print arg
pool = Pool(5)
#排队执行,内带join
#print pool.apply(Foo,(1,))
#并发执行,主进程不等待子进程(daemon=True),可以设置回调函数
#print pool.apply_async(func =Foo, args=(1,)).get()
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
print ‘end‘
pool.close() #等待线程池全部执行完毕后关闭线程池
pool.terminate() # 立即关闭线程池里面的所有线程
#进程池中进程执行完毕后再关闭,必须要先执行close或者是terminate函数
pool.join()
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
greenlet
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
#!/usr/bin/env python# -*- coding:utf-8 -*-from greenlet import greenletdef test1(): print 12 gr2.switch() print 34 gr2.switch()def test2(): print 56 gr1.switch() print 78gr1 = greenlet(test1)gr2 = greenlet(test2)gr1.switch() |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import geventdef foo(): print(‘Running in foo‘) gevent.sleep(0) print(‘Explicit context switch to foo again‘)def bar(): print(‘Explicit context to bar‘) gevent.sleep(0) print(‘Implicit context switch back to bar‘)gevent.joinall([ gevent.spawn(foo), gevent.spawn(bar),]) |
遇到IO操作自动切换:
from gevent import monkey; monkey.patch_all()
import gevent
import urllib2
def f(url):
print(‘GET: %s‘ % url)
resp = urllib2.urlopen(url)
data = resp.read()
print(‘%d bytes received from %s.‘ % (len(data), url))
gevent.joinall([
gevent.spawn(f, ‘https://www.python.org/‘),
gevent.spawn(f, ‘https://www.yahoo.com/‘),
gevent.spawn(f, ‘https://github.com/‘),
])
事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import threadingdef do(event): print ‘start‘ event.wait() print ‘execute‘event_obj = threading.Event()for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start()event_obj.clear()inp = raw_input(‘input:‘)if inp == ‘true‘: event_obj.set() |
条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import threadingdef run(n): con.acquire() con.wait() print("run the thread: %s" %n) con.release()if __name__ == ‘__main__‘: con = threading.Condition() for i in range(10): t = threading.Thread(target=run, args=(i,)) t.start() while True: inp = input(‘>>>‘) if inp == ‘q‘: break con.acquire() con.notify(int(inp)) con.release() |
原文:http://www.cnblogs.com/LiCheng-/p/6492537.html