1.集合
主要作用:
>>> a = {1,3,4,5,10} >>> b = {2,3,4,5,8} #交集 >>> a & b {3, 4, 5} >>> a.intersection(b) {3, 4, 5} >>> a.intersection_update(b) None >>> a {3, 4, 5} >>> a = {1,3,4,5,10} #差集 >>> b - a {8, 2} >>> a - b {1, 10} >>> a.difference(b) {1, 10} #并集 >>> a | b {1, 2, 3, 4, 5, 8, 10} >>> a.union(b) {1, 2, 3, 4, 5, 8, 10} #对称差集 >>> a ^ b {1, 2, 8, 10} >>> a.symmetric_difference(b) {1, 2, 8, 10}
只读列表,只有count, index 2 个方法
作用:如果一些数据不想被人修改, 可以存成元组,比如身份证列表
为什么会查询速度会快呢?因为他是hash类型的,那什么是hash呢?
哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法
dict会把所有的key变成hash 表,然后将这个表进行排序,这样,你通过data[key]去查data字典中一个key的时候,python会先把这个key hash成一个数字,然后拿这个数字到hash表中看没有这个数字, 如果有,拿到这个key在hash表中的索引,拿到这个索引去与此key对应的value的内存地址那取值就可以了。
先说python2
再说python3
编码应用比较多的场景应该是爬虫了,互联网上很多网站用的编码格式很杂,虽然整体趋向都变成utf-8,但现在还是很杂,所以爬网页时就需要你进行各种编码的转换,不过生活正在变美好,期待一个不需要转码的世界。
5.函数
默认参数
看下面代码
def stu_register(name,age,country,course): print("----注册学生信息------") print("姓名:",name) print("age:",age) print("国籍:",country) print("课程:",course) stu_register("王山炮",22,"CN","python_devops") stu_register("张叫春",21,"CN","linux") stu_register("刘老根",25,"CN","linux")
发现 country 这个参数 基本都 是"CN", 就像我们在网站上注册用户,像国籍这种信息,你不填写,默认就会是 中国, 这就是通过默认参数实现的,把country变成默认参数非常简单
def stu_register(name,age,course,country="CN"):
这样,这个参数在调用时不指定,那默认就是CN,指定了的话,就用你指定的值。
另外,你可能注意到了,在把country变成默认参数后,我同时把它的位置移到了最后面,为什么呢?
关键参数
正常情况下,给函数传参数要按顺序,不想按顺序就可以用关键参数,只需指定参数名即可,但记住一个要求就是,关键参数必须放在位置参数之后。
stu_register(age=22,name=‘alex‘,course="python",)
非固定参数
若你的函数在定义时不确定用户想传入多少个参数,就可以使用非固定参数
def stu_register(name,age,*args): # *args 会把多传入的参数变成一个元组形式 print(name,age,args) stu_register("Alex",22) #输出 #Alex 22 () #后面这个()就是args,只是因为没传值,所以为空 stu_register("Jack",32,"CN","Python") #输出 # Jack 32 (‘CN‘, ‘Python‘)
还可以有一个**kwargs
def stu_register(name,age,*args,**kwargs): # *kwargs 会把多传入的参数变成一个dict形式 print(name,age,args,kwargs) stu_register("Alex",22) #输出 #Alex 22 () {}#后面这个{}就是kwargs,只是因为没传值,所以为空 stu_register("Jack",32,"CN","Python",sex="Male",province="ShanDong") #输出 # Jack 32 (‘CN‘, ‘Python‘) {‘province‘: ‘ShanDong‘, ‘sex‘: ‘Male‘}
递归
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
def calc(n): print(n) if int(n/2) ==0: return n return calc(int(n/2)) calc(10) 输出: 10 5 2 1
递归特性:
1. 必须有一个明确的结束条件
2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
原文:http://www.cnblogs.com/wangyufu/p/6380888.html