首页 > 编程语言 > 详细

普林斯顿算法课Part2第三周作业_BaseballElimination

时间:2017-02-05 16:31:03      阅读:731      评论:0      收藏:0      [点我收藏+]

作业地址:http://http://coursera.cs.princeton.edu/algs4/assignments/baseball.html

作业难点:

1、如何计算非平凡淘汰(Nontrivial elimination)?

  关键在于理解题目的这句话“If all edges in the maxflow that are pointing from s are full, then this corresponds to assigning winners to all of the remaining games in such a way that no team wins more games than x. If some edges pointing from s are not full, then there is no scenario in which team x can win the division.”

  1)平凡淘汰:从所有队伍中直接淘汰w[i] + r[i] < max{w[i]}的队伍;

  2)在剩余的队伍中,分别以w[i] + r[i]作为所有队伍必须完成的胜场次数,估算[team vertices] -> [sink vertice]的capacity:w[i] + r[i] - w[j],然后按题目提示:

          

from to capacity
[source vertice] [game vertices] game[i][j]
[game vertices] [team vertices] infinity
[team vertices] [sink vertice] w[i] + r[i] - w[j]

  

  构建FlowNetWork;

  3)通过FordFulkerson算法求解每个w[i] + r[i]下的流量,确定是否达到最大流量,如果没有达到最大流量,说明比赛没有进行完所有队伍的胜场已达到w[i]+r[i],亦即最终获胜的队伍胜场大于w[i]+r[i],说明这第i支队伍需要被淘汰;

2、如何计算队伍是被哪些队伍淘汰的?

  1)平凡淘汰:队伍是被目前领先的队伍直接淘汰;

  2)非平凡淘汰:根据最大流最小切定理(以及题目提示:What the min cut tells us.),队伍被过source的最小切上的顶点所淘汰。

容易扣分点:

本题目的特征是要么没有理解题意难以求解,要么很顺利得出最终结果。

部分代码:

1、数据结构:

    private int[] w, l, r;
    private int[][] games;
    private Map<String, Integer> teamMap;
    private int maxWins = -1;
    private String leadingTeam;    
    private static final double MAX_EDGE = Double.POSITIVE_INFINITY; 

    private class spGraph {
        FordFulkerson ff;
        FlowNetwork flowNetwork;
        int s;

        public spGraph(FordFulkerson ff, FlowNetwork network, int source, int sink) {
            super();
            this.ff = ff;
            this.flowNetwork = network;
            this.s = source;            
        }
    }

 

2、构造网络流图:

技术分享
    private spGraph buildGraph(int id) {
        int n = numberOfTeams();
        int source = n;
        int sink = n + 1;
        int gameVertice = n + 2;
        int curMaxWins = w[id] + r[id];
        Set<FlowEdge> edges = new HashSet<FlowEdge>();
        for (int i = 0; i < n; i++) {
            if (i == id || trvialEnd(i)) 
                continue;            
            for (int j = 0; j < i; j++) {
                if (j == id || trvialEnd(j) || games[i][j] == 0)
                    continue;                
                edges.add(new FlowEdge(source, gameVertice, games[i][j]));
                edges.add(new FlowEdge(gameVertice, i, MAX_EDGE));
                edges.add(new FlowEdge(gameVertice, j, MAX_EDGE));
                gameVertice++;
            }
            edges.add(new FlowEdge(i, sink, curMaxWins - w[i]));
        }
        FlowNetwork flowNetwork = new FlowNetwork(gameVertice);
        for (FlowEdge edge : edges) 
            flowNetwork.addEdge(edge);        
        FordFulkerson ff = new FordFulkerson(flowNetwork, source, sink);
        return new spGraph(ff, flowNetwork, source, sink);
    }
View Code

 

普林斯顿算法课Part2第三周作业_BaseballElimination

原文:http://www.cnblogs.com/notTao/p/6367733.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!