一、数字数据类型
Python的数字数据类型用于存储数值,它是不可变的数据类型,这意味着改变数字数据类型,则需要一个新分配的对象;
Python支持四种不同的数值类型:
整型(Int):通常被称为是整型或整数,是正或负整数,不带小数点;
长整型(long integers):无限大小的整数,整数最后是一个大写或小写的L;
浮点型(floating point real values):浮点型由整数部分与小数部分组成,浮点型也可以使用科学计数法表示(2.5e2 = 2.5 x 102 = 250);
复数(complex numbers):复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示, 复数的实部a和虚部b都是浮点型;
例如:
int | long | float | complex |
10 | 51924361L | 0 | 3.14j |
100 | -0x19323L | 15.2 | 45.j |
-786 | 0122L | -21.9 | 9.322e-36j |
80 | 0xDEFABCECBDAECBFBAEl | 32.3+e18 | .876j |
-490 | 535633629843L | -90 | -.6545+0J |
-0x260 | -052318172735L | -3.25E+101 | 3e+26J |
0x69 | -4721885298529L | 70.2-E12 | 4.53e-7j |
长整型也可以使用小写"l",但是还是建议您使用大写"L",避免与数字"1"混淆。因此,还是使用"L"来显示长整型;
复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示, 复数的实部a和虚部b都是浮点型;
在Python中整型(int)最常用,在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483647;在64位系统上,整数的位数为64位,取值范围为-2**63~2**63-1,即-9223372036854775808~9223372036854775807;
1、int的函数说明
class int(object): """ int(x=0) -> int or long int(x, base=10) -> int or long Convert a number or string to an integer, or return 0 if no arguments are given. If x is floating point, the conversion truncates towards zero. If x is outside the integer range, the function returns a long instead. If x is not a number or if base is given, then x must be a string or Unicode object representing an integer literal in the given base. The literal can be preceded by ‘+‘ or ‘-‘ and be surrounded by whitespace. The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer literal. >>> int(‘0b100‘, base=0) 4 """ def bit_length(self): # real signature unknown; restored from __doc__ """ int.bit_length() -> int Number of bits necessary to represent self in binary. >>> bin(37) ‘0b100101‘ >>> (37).bit_length() 6 """ return 0 def conjugate(self, *args, **kwargs): # real signature unknown """ Returns self, the complex conjugate of any int. """ pass def __abs__(self): # real signature unknown; restored from __doc__ """ x.__abs__() <==> abs(x) """ pass def __add__(self, y): # real signature unknown; restored from __doc__ """ x.__add__(y) <==> x+y """ pass def __and__(self, y): # real signature unknown; restored from __doc__ """ x.__and__(y) <==> x&y """ pass def __cmp__(self, y): # real signature unknown; restored from __doc__ """ x.__cmp__(y) <==> cmp(x,y) """ pass def __coerce__(self, y): # real signature unknown; restored from __doc__ """ x.__coerce__(y) <==> coerce(x, y) """ pass def __divmod__(self, y): # real signature unknown; restored from __doc__ """ x.__divmod__(y) <==> divmod(x, y) """ pass def __div__(self, y): # real signature unknown; restored from __doc__ """ x.__div__(y) <==> x/y """ pass def __float__(self): # real signature unknown; restored from __doc__ """ x.__float__() <==> float(x) """ pass def __floordiv__(self, y): # real signature unknown; restored from __doc__ """ x.__floordiv__(y) <==> x//y """ pass def __format__(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, name): # real signature unknown; restored from __doc__ """ x.__getattribute__(‘name‘) <==> x.name """ pass def __getnewargs__(self, *args, **kwargs): # real signature unknown pass def __hash__(self): # real signature unknown; restored from __doc__ """ x.__hash__() <==> hash(x) """ pass def __hex__(self): # real signature unknown; restored from __doc__ """ x.__hex__() <==> hex(x) """ pass def __index__(self): # real signature unknown; restored from __doc__ """ x[y:z] <==> x[y.__index__():z.__index__()] """ pass def __init__(self, x, base=10): # known special case of int.__init__ """ int(x=0) -> int or long int(x, base=10) -> int or long Convert a number or string to an integer, or return 0 if no arguments are given. If x is floating point, the conversion truncates towards zero. If x is outside the integer range, the function returns a long instead. If x is not a number or if base is given, then x must be a string or Unicode object representing an integer literal in the given base. The literal can be preceded by ‘+‘ or ‘-‘ and be surrounded by whitespace. The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer literal. >>> int(‘0b100‘, base=0) 4 # (copied from class doc) """ pass def __int__(self): # real signature unknown; restored from __doc__ """ x.__int__() <==> int(x) """ pass def __invert__(self): # real signature unknown; restored from __doc__ """ x.__invert__() <==> ~x """ pass def __long__(self): # real signature unknown; restored from __doc__ """ x.__long__() <==> long(x) """ pass def __lshift__(self, y): # real signature unknown; restored from __doc__ """ x.__lshift__(y) <==> x<<y """ pass def __mod__(self, y): # real signature unknown; restored from __doc__ """ x.__mod__(y) <==> x%y """ pass def __mul__(self, y): # real signature unknown; restored from __doc__ """ x.__mul__(y) <==> x*y """ pass def __neg__(self): # real signature unknown; restored from __doc__ """ x.__neg__() <==> -x """ pass @staticmethod # known case of __new__ def __new__(S, *more): # real signature unknown; restored from __doc__ """ T.__new__(S, ...) -> a new object with type S, a subtype of T """ pass def __nonzero__(self): # real signature unknown; restored from __doc__ """ x.__nonzero__() <==> x != 0 """ pass def __oct__(self): # real signature unknown; restored from __doc__ """ x.__oct__() <==> oct(x) """ pass def __or__(self, y): # real signature unknown; restored from __doc__ """ x.__or__(y) <==> x|y """ pass def __pos__(self): # real signature unknown; restored from __doc__ """ x.__pos__() <==> +x """ pass def __pow__(self, y, z=None): # real signature unknown; restored from __doc__ """ x.__pow__(y[, z]) <==> pow(x, y[, z]) """ pass def __radd__(self, y): # real signature unknown; restored from __doc__ """ x.__radd__(y) <==> y+x """ pass def __rand__(self, y): # real signature unknown; restored from __doc__ """ x.__rand__(y) <==> y&x """ pass def __rdivmod__(self, y): # real signature unknown; restored from __doc__ """ x.__rdivmod__(y) <==> divmod(y, x) """ pass def __rdiv__(self, y): # real signature unknown; restored from __doc__ """ x.__rdiv__(y) <==> y/x """ pass def __repr__(self): # real signature unknown; restored from __doc__ """ x.__repr__() <==> repr(x) """ pass def __rfloordiv__(self, y): # real signature unknown; restored from __doc__ """ x.__rfloordiv__(y) <==> y//x """ pass def __rlshift__(self, y): # real signature unknown; restored from __doc__ """ x.__rlshift__(y) <==> y<<x """ pass def __rmod__(self, y): # real signature unknown; restored from __doc__ """ x.__rmod__(y) <==> y%x """ pass def __rmul__(self, y): # real signature unknown; restored from __doc__ """ x.__rmul__(y) <==> y*x """ pass def __ror__(self, y): # real signature unknown; restored from __doc__ """ x.__ror__(y) <==> y|x """ pass def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__ """ y.__rpow__(x[, z]) <==> pow(x, y[, z]) """ pass def __rrshift__(self, y): # real signature unknown; restored from __doc__ """ x.__rrshift__(y) <==> y>>x """ pass def __rshift__(self, y): # real signature unknown; restored from __doc__ """ x.__rshift__(y) <==> x>>y """ pass def __rsub__(self, y): # real signature unknown; restored from __doc__ """ x.__rsub__(y) <==> y-x """ pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__ """ x.__rtruediv__(y) <==> y/x """ pass def __rxor__(self, y): # real signature unknown; restored from __doc__ """ x.__rxor__(y) <==> y^x """ pass def __str__(self): # real signature unknown; restored from __doc__ """ x.__str__() <==> str(x) """ pass def __sub__(self, y): # real signature unknown; restored from __doc__ """ x.__sub__(y) <==> x-y """ pass def __truediv__(self, y): # real signature unknown; restored from __doc__ """ x.__truediv__(y) <==> x/y """ pass def __trunc__(self, *args, **kwargs): # real signature unknown """ Truncating an Integral returns itself. """ pass def __xor__(self, y): # real signature unknown; restored from __doc__ """ x.__xor__(y) <==> x^y """ pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the real part of a complex number"""
本文出自 “m199369309” 博客,请务必保留此出处http://434727.blog.51cto.com/424727/1894351
原文:http://434727.blog.51cto.com/424727/1894351