Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1628 Accepted Submission(s): 382
hdu 4670 Cube number on a tree(点分治)
problem:
在一棵树上,求多少条路径的点权值积为立方数
solve:
和普通的求积为k的点对数很像.因为权值有10^15,所以用质因子来记录每个树的权值. 然后就是状态保存,因为当你知道当前子树的一条链时
,需要查找其它子树(同一根)是否有链与其对应使积为立方数. 质因子总共有30位,所以可以用一个longlong来记录状态,用map保存
(递归所有重心,每次计算当前重心的所有情况)
hhh-2016-08-24 09:42:56
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
#define mod 1000003
using namespace std;
const ll xo = (1LL << 61)-1;
const int maxn = 50010;
int head[maxn];
int n,k,s[maxn],f[maxn],root;
int Size,tot;
bool vis[maxn];
ll factor[maxn][31],d[maxn][31],fac[31];
int facnt;
int id[maxn];
ll val;
struct node
{
int to;
int next;
} edge[maxn << 2];
void ini()
{
clr(factor,0);
clr(head,-1),clr(vis,0);
clr(s,0);
tot = 0;
}
void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
}
void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now]; ~i; i = edge[i].next)
{
if((v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size-s[now]);
if(f[now] < f[root]) root = now;
}
int num;
map<ll,ll> mp;
ll make_hash(ll q[])
{
ll t = 0;
for(int i = 0; i < facnt; i++)
{
t = t*3LL + q[i];
}
return t;
}
void dfs(int now,int fa)
{
int v;
id[num++] = now;
s[now] = 1;
for(int i = head[now]; ~i; i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
for(int j = 0; j < facnt; j++)
{
d[v][j] = (factor[v][j]+d[now][j])%3;
}
dfs(v,now);
s[now] += s[v];
}
}
ll ans = 0;
ll tp[31];
void Debug(ll t)
{
for(int i = 30; i >= 0; i--)
{
if(t & (1 << i))
printf("1");
else
printf("0");
}
cout << endl;
}
void make_ans(int now,int cnt)
{
int v ;
f[0] = Size = cnt;
get_root(now,root = 0);
vis[root] = 1;
mp.clear();
ll ts = make_hash(factor[root]);
if(ts == 0)
ans ++;
for(int i = head[root]; ~i; i = edge[i].next)
{
if(vis[v = edge[i].to])
continue;
num = 0;
for(int j = 0; j < facnt; j++)
d[v][j] = factor[v][j];
dfs(v,root);
for(int j = 0; j < num; j++)
{
for(int t = 0; t < facnt; t++)
{
tp[t] = (d[id[j]][t] + factor[root][t])%3;
}
ll ta = make_hash(tp);
if(ta == 0)
{
ans ++;
}
ta = 0;
for(int t = 0; t < facnt; t++)
ta = ta*3LL + (3LL-tp[t])%3;
if(mp[ta] > 0)
{
ans += mp[ta];
}
}
for(int j = 0; j < num; j++)
{
ll ta = make_hash(d[id[j]]);
if(mp[ta] == -1)
mp[ta] = 0;
mp[ta] ++;
}
}
for(int i = head[root]; ~i; i = edge[i].next)
{
if(vis[v = edge[i].to])
continue;
make_ans(v,s[v]);
}
}
void make_fac(int u,ll cur)
{
ll t = cur;
for(int i = 0; i < facnt; i++)
{
while(t % fac[i] == 0)
{
t /= fac[i];
factor[u][i]++;
}
factor[u][i] %= 3;
}
}
int main()
{
int n,u,v;
// freopen("in.txt","r",stdin);
while( scanfi(n) != EOF)
{
ini();
scanfi(facnt);
for(int i = 0; i < facnt; i++)
scanfl(fac[i]);
for(int i = 1; i<= n; i++)
{
scanfl(val);
make_fac(i,val);
}
for(int i = 1; i < n; i++)
{
scanfi(u),scanfi(v);
add_edge(u,v);
add_edge(v,u);
}
ans =0;
make_ans(1,n);
printf("%I64d\n",ans);
}
return 0;
}
hdu 4670 Cube number on a tree(点分治)
原文:http://www.cnblogs.com/Przz/p/5812343.html