题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4588
思路:
0     0000
1     0001
2     0010
3     0011
4     0100
5     0101
6     0110
7     0111
8    1000
9    1001
10 1010
观察可知,第i位有(1<<i)个0,与(1<<i)个1,按照长度为(1<<(i+1))长度循环。则对于数n,可以求出1到n中各位1的个数num2[i],则进位次数为sum(num[i] / 2),注意每次向高位进位(num2[i+1]+=num2[i] / 2)。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
LL num1[65],num2[65];
void solve(LL num[],LL n)
{
    for(int i=0;i<63;i++) num[i]=0;
    n++;
    for(int i=0;i<63;i++)
    {
       LL tmp1=(1LL)<<(i+1);
       LL tmp2=(1LL)<<i;
       num[i]+=n/tmp1*(1<<i);
       if(n%tmp1>tmp2)num[i]+=n%tmp1-tmp2;
    }
    /*for(int i=0;i<63;i++)
        cout<<i<<" "<<num[i]<<endl;*/
}
int main()
{
    LL a,b;
    //solve(num1,20);
    //solve(num2,6);
    while(scanf("%I64d%I64d",&a,&b)==2)
    {
        solve(num1,a-1);
        solve(num2,b);
        for(int i=0;i<63;i++) num2[i]-=num1[i];
        LL ans=0;
        for(int i=0;i<63;i++)
        {
            ans+=num2[i]/2;
            num2[i+1]+=num2[i]/2;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}Hdu 4588 Count The Carries (规律)
原文:http://blog.csdn.net/wang2147483647/article/details/52074701