Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u
Description
Input
Output
Sample Input
4 0:(1) 1 1:(2) 2 3 2:(0) 3:(0) 5 3:(3) 1 4 2 1:(1) 0 2:(0) 0:(0) 4:(0)
Sample Output
1 2
题目大意:给你一个树状结构,每一个节点都可以放置士兵,可以看守住与 该节点相邻的所有边,问你最少需要多少个节点。
思路分析:树的最小点覆盖问题,首先确定状态f[i[0]表示在根节点i上不放置士兵看守住这棵子树需要的最少士兵,f[i][0]
则代表根结点i上不放置士兵看守住所需要的最少士兵,状态转移方程f[i][1]+=min(f[j][1],f[j][0]),f[i][0]+=f[j][1]
初始化f[i][[1]=1,f[i][0]=0;
代码:
/*树的最小点覆盖
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1500+10;
int fat[maxn];
int dp[maxn][2];
bool vis[maxn];//标记
int n;
void dfs(int x)
{
//cout<<x<<endl;
vis[x]=true;
dp[x][1]=1;
dp[x][0]=0;
for(int i=0;i<n;i++)
{
if(!vis[i]&&fat[i]==x)
{
dfs(i);
dp[x][1]+=min(dp[i][0],dp[i][1]);//子节点可放可不放
dp[x][0]+=dp[i][1];
}
}
}
int main()
{
int r,num;
int a;
int i;
while(scanf("%d",&n)!=EOF)
{
// cout<<n<<endl;
memset(fat,0,sizeof(fat));
memset(vis,false,sizeof(vis));
for(int k=0;k<n;k++)
{
scanf("%d:(%d)",&r,&num);
//cout<<r<<" "<<num<<endl;
for(int i=1;i<=num;i++)
{
scanf("%d",&a);
fat[a]=r;
// cout<<a<<endl;
}
}
// for(int i=0;i<n;i++)
//cout<<fat[i]<<endl;
for(i=0;i<n;i++)
{
if(!fat[i])
{
//cout<<i<<endl;
dfs(i);
cout<<min(dp[i][0],dp[i][1])<<endl;
break;
}
}
}
return 0;
}
原文:http://www.cnblogs.com/xuejianye/p/5662501.html