object DirectKafkaWordCount {def main(args: Array[String]) {if (args.length < 2) {System.err.println(s"""|Usage: DirectKafkaWordCount <brokers> <topics>| <brokers> is a list of one or more Kafka brokers| <topics> is a list of one or more kafka topics to consume from|""".stripMargin)System.exit(1)}StreamingExamples.setStreamingLogLevels()val Array(brokers, topics) = args// Create context with 2 second batch intervalval sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")val ssc = new StreamingContext(sparkConf, Seconds(2))// Create direct kafka stream with brokers and topicsval topicsSet = topics.split(",").toSetval kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)// Get the lines, split them into words, count the words and printval lines = messages.map(_._2)val words = lines.flatMap(_.split(" "))val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)wordCounts.print()// Start the computationssc.start()ssc.awaitTermination()}}
/*** A batch-oriented interface for consuming from Kafka.* Starting and ending offsets are specified in advance,* so that you can control exactly-once semantics.* @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">* configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers" to be set* with Kafka broker(s) specified in host1:port1,host2:port2 form.* @param offsetRanges offset ranges that define the Kafka data belonging to this RDD* @param messageHandler function for translating each message into the desired type*/private[kafka]class KafkaRDD[K: ClassTag,V: ClassTag,U <: Decoder[_]: ClassTag,T <: Decoder[_]: ClassTag,R: ClassTag] private[spark] (sc: SparkContext,kafkaParams: Map[String, String],val offsetRanges: Array[OffsetRange], //该RDD的数据偏移量leaders: Map[TopicAndPartition, (String, Int)],messageHandler: MessageAndMetadata[K, V] => R) extends RDD[R](sc, Nil) with Logging with HasOffsetRanges
trait HasOffsetRanges {def offsetRanges: Array[OffsetRange]}
inal class OffsetRange private(val topic: String,val partition: Int,val fromOffset: Long,val untilOffset: Long) extends Serializable
override def getPartitions: Array[Partition] = {offsetRanges.zipWithIndex.map { case (o, i) =>val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)}.toArray}
private[kafka]class KafkaRDDPartition(val index: Int,val topic: String,val partition: Int,val fromOffset: Long,val untilOffset: Long,val host: String,val port: Int) extends Partition {/** Number of messages this partition refers to */def count(): Long = untilOffset - fromOffset}
override def compute(thePart: Partition, context: TaskContext): Iterator[R] = {val part = thePart.asInstanceOf[KafkaRDDPartition]assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))if (part.fromOffset == part.untilOffset) {log.info(s"Beginning offset ${part.fromOffset} is the same as ending offset " +s"skipping ${part.topic} ${part.partition}")Iterator.empty} else {new KafkaRDDIterator(part, context)}}
private class KafkaRDDIterator(part: KafkaRDDPartition,context: TaskContext) extends NextIterator[R] {context.addTaskCompletionListener{ context => closeIfNeeded() }log.info(s"Computing topic ${part.topic}, partition ${part.partition} " +s"offsets ${part.fromOffset} -> ${part.untilOffset}")val kc = new KafkaCluster(kafkaParams)val keyDecoder = classTag[U].runtimeClass.getConstructor(classOf[VerifiableProperties]).newInstance(kc.config.props).asInstanceOf[Decoder[K]]val valueDecoder = classTag[T].runtimeClass.getConstructor(classOf[VerifiableProperties]).newInstance(kc.config.props).asInstanceOf[Decoder[V]]val consumer = connectLeadervar requestOffset = part.fromOffsetvar iter: Iterator[MessageAndOffset] = null- //..................
- }
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
def createDirectStream[K: ClassTag,V: ClassTag,KD <: Decoder[K]: ClassTag,VD <: Decoder[V]: ClassTag] (ssc: StreamingContext,kafkaParams: Map[String, String],topics: Set[String]): InputDStream[(K, V)] = {val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)- //创建KakfaCluster对象
val kc = new KafkaCluster(kafkaParams)- //更具kc的信息获取数据偏移量
val fromOffsets = getFromOffsets(kc, kafkaParams, topics)new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](ssc, kafkaParams, fromOffsets, messageHandler)}
override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {//计算最近的数据终止偏移量val untilOffsets = clamp(latestLeaderOffsets(maxRetries))- //利用数据的偏移量创建KafkaRDD
val rdd = KafkaRDD[K, V, U, T, R](context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)// Report the record number and metadata of this batch interval to InputInfoTracker.val offsetRanges = currentOffsets.map { case (tp, fo) =>val uo = untilOffsets(tp)OffsetRange(tp.topic, tp.partition, fo, uo.offset)}val description = offsetRanges.filter { offsetRange =>// Don‘t display empty ranges.offsetRange.fromOffset != offsetRange.untilOffset}.map { offsetRange =>s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"}.mkString("\n")// Copy offsetRanges to immutable.List to prevent from being modified by the userval metadata = Map("offsets" -> offsetRanges.toList,StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)val inputInfo = StreamInputInfo(id, rdd.count, metadata)ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)Some(rdd)}
15、Spark Streaming源码解读之No Receivers彻底思考
原文:http://www.cnblogs.com/zhouyf/p/5554774.html