在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子。transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有当某个action的算子执行之后,前面所有的transformation算子才会全部执行。常用的action算子如下代码所列:(java版) 
package cn.spark.study.core;
import java.util.Arrays; 
import java.util.List; 
import java.util.Map;
import org.apache.spark.SparkConf; 
import org.apache.spark.api.java.JavaPairRDD; 
import org.apache.spark.api.java.JavaRDD; 
import org.apache.spark.api.java.JavaSparkContext; 
import org.apache.spark.api.java.function.Function; 
import org.apache.spark.api.java.function.Function2;
import scala.Tuple2;
/** 
 * action操作实战 
 * @author dd 
 * 
 */ 
public class ActionOperation { 
    public static void main(String[] args) { 
        //reduceTest(); 
        //collectTest(); 
        //countTest(); 
        //takeTest(); 
        countByKeyTest(); 
    }
/**
 * reduce算子
 * 案例:求累加和
 */
private static void reduceTest(){
    SparkConf conf = new SparkConf()
                    .setAppName("reduce")
                    .setMaster("local");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
    JavaRDD<Integer> numbersRDD = sc.parallelize(numberList);
    //使用reduce操作对集合中的数字进行累加
    int sum = numbersRDD.reduce(new Function2<Integer, Integer, Integer>() {
        @Override
        public Integer call(Integer arg0, Integer arg1) throws Exception {
            return arg0+arg1;
        }
    });
    System.out.println(sum);
    sc.close();
}
/**
 * collect算子
 * 可以将集群上的数据拉取到本地进行遍历(不推荐使用)
 */
private static void collectTest(){
    SparkConf conf = new SparkConf()
    .setAppName("collect")
    .setMaster("local");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
    JavaRDD<Integer> numbersRDD = sc.parallelize(numberList);
    JavaRDD<Integer> doubleNumbers = numbersRDD.map(new Function<Integer, Integer>() {
        @Override
        public Integer call(Integer arg0) throws Exception {
            // TODO Auto-generated method stub
            return arg0*2;
        }
    });
    //foreach的action操作是在远程集群上遍历rdd中的元素,而collect操作是将在分布式集群上的rdd
    //数据拉取到本地,这种方式一般不建议使用,因为如果rdd中的数据量较大的话,比如超过一万条,那么性能会
    //比较差,因为要从远程走大量的网络传输,将数据获取到本地,有时还可能发生oom异常,内存溢出
    //所以还是推荐使用foreach操作来对最终的rdd进行处理
    List<Integer> doubleNumList = doubleNumbers.collect();
    for(Integer num : doubleNumList){
        System.out.println(num);
    }
    sc.close();
}
/**
 * count算子
 * 可以统计rdd中的元素个数
 */
private static void countTest(){
    SparkConf conf = new SparkConf()
    .setAppName("count")
    .setMaster("local");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
    JavaRDD<Integer> numbersRDD = sc.parallelize(numberList);
    //对rdd使用count操作统计rdd中元素的个数
    long count = numbersRDD.count();
    System.out.println(count);
    sc.close();
}
/**
 * take算子
 * 将远程rdd的前n个数据拉取到本地
 */
private static void takeTest(){
    SparkConf conf = new SparkConf()
    .setAppName("take")
    .setMaster("local");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
    JavaRDD<Integer> numbersRDD = sc.parallelize(numberList);
    //take操作与collect操作类似,也是从远程集群上获取rdd数据,但是,collect操作获取的是rdd的
    //所有数据,take获取的只是前n个数据
    List<Integer> top3number = numbersRDD.take(3);
    for(Integer num : top3number){
        System.out.println(num);
    }
    sc.close();
}
/**
 * saveAsTextFile算子
 * 
 */
private static void saveAsTExtFileTest(){
    SparkConf conf = new SparkConf()
    .setAppName("saveAsTextFile");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
    JavaRDD<Integer> numbersRDD = sc.parallelize(numberList);
    JavaRDD<Integer> doubleNumbers = numbersRDD.map(new Function<Integer, Integer>() {
        @Override
        public Integer call(Integer arg0) throws Exception {
            // TODO Auto-generated method stub
            return arg0*2;
        }
    });
    //saveAsTextFile算子可以直接将rdd中的数据保存在hdfs中
    //但是我们在这里只能指定保存的文件夹也就是目录,那么实际上,会保存为目录中的
    //  /double_number.txt/part-00000文件
    doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
    sc.close();
}
/**
 * countByKey算子
 */
private static void countByKeyTest(){
    SparkConf conf = new SparkConf()
    .setAppName("take")
    .setMaster("local");
    JavaSparkContext sc = new JavaSparkContext(conf);
    List<Tuple2<String, String>> studentsList = Arrays.asList(
            new Tuple2<String, String>("class1","leo"),
            new Tuple2<String, String>("class2","jack"),
            new Tuple2<String, String>("class1","marry"),
            new Tuple2<String, String>("class2","tom"),
            new Tuple2<String, String>("class2","david"));
    JavaPairRDD<String, String> studentsRDD = sc.parallelizePairs(studentsList);
    //countByKey算子可以统计每个key对应元素的个数
    //countByKey返回的类型直接就是Map<String,Object>
    Map<String, Object> studentsCounts = studentsRDD.countByKey();
    for(Map.Entry<String, Object> studentsCount : studentsCounts.entrySet()){
        System.out.println(studentsCount.getKey()+" : "+studentsCount.getValue());
    }
    sc.close();
}
}
原文:http://blog.csdn.net/kongshuchen/article/details/51344124