修改算法1:按照求包含重复元素集合子集的方法LeetCode:Subsets II算法1的解释,我们知道:若当前处理的元素如果在前面出现过m次,那么只有当前组合中包含m个该元素时,才把当前元素加入组合
| 
       1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
      11 
      12 
      13 
      14 
      15 
      16 
      17 
      18 
      19 
      20 
      21 
      22 
      23 
      24 
      25 
      26 
      27 
      28 
      29 
      30 
      31 
      32 
      33 
      34 
      35 
      36 
      37 
      38 
      39 
      40 
      41 
      42 
      43 
      44  | 
    
      class 
Solution {public:    void 
combine(vector<int> &vec, int 
k) {        if(k > vec.size())return;        sort(vec.begin(), vec.end());        vector<int>tmpres;        helper(vec, 0, k, 0, tmpres);    }         //从vec的[start,vec.size()-1]范围内选取k个数,tmpres是当前组合    //times是上一个元素出现的次数    void 
helper(vector<int> &vec, int 
start, int 
k, int 
times, vector<int> &tmpres)    {        if(vec.size()-start < k)return;        if(k == 0)        {            for(int 
i = 0; i < tmpres.size(); i++)                cout<<tmpres[i]<<" ";            cout<<endl;            return;        }        if(start == 0 || vec[start] != vec[start-1])//当前元素前面没有出现过        {            //选择vec[start]            tmpres.push_back(vec[start]);            helper(vec, start+1, k-1, 1, tmpres);            tmpres.pop_back();            //不选择vec[start]            helper(vec, start+1, k, 1, tmpres);        }        else//当前元素前面出现过        {            if(tmpres.size() >= times && tmpres[tmpres.size()-times] == vec[start])            {                //只有当tmpres中包含times个vec[start]时,才选择vec[start]                tmpres.push_back(vec[start]);                helper(vec, start+1, k-1, times+1, tmpres);                tmpres.pop_back();            }            helper(vec, start+1, k, times+1, tmpres);        }    }}; | 
从[1,2,2,3,3,4,5]中选3个的结果如下:
修改算法2:同理,可以得到代码如下 本文地址
| 
       1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
      11 
      12 
      13 
      14 
      15 
      16 
      17 
      18 
      19 
      20 
      21 
      22 
      23 
      24 
      25 
      26 
      27 
      28 
      29 
      30 
      31 
      32 
      33 
      34 
      35 
      36 
      37 
      38 
      39 
      40 
      41 
      42 
      43 
      44 
      45 
      46 
      47  | 
    
      class 
Solution {public:    void 
combine(vector<int> &vec, int 
k) {        if(k > vec.size())return;        sort(vec.begin(), vec.end());        vector<int>tmpres;        helper(vec, 0, k, 0, tmpres);    }         //从vec的[start,vec.size()-1]范围内选取k个数,tmpres是当前组合    //times是上一个元素出现的次数    void 
helper(vector<int> &vec, int 
start, int 
k, int 
times, vector<int> &tmpres)    {        if(vec.size()-start < k)return;        if(k == 0)        {            for(int 
i = 0; i < tmpres.size(); i++)                cout<<tmpres[i]<<" ";            cout<<endl;            return;        }        for(int 
i = start; i <= vec.size()-k; i++)        {            if(i == 0 || vec[i] != vec[i-1])//当前元素前面没有出现过            {                times = 1;                //选择vec[i]                tmpres.push_back(vec[i]);                helper(vec, i+1, k-1, 1, tmpres);                tmpres.pop_back();            }            else//当前元素前面出现过            {                times++;                //vec[i]前面已经出现过times-1次                if(tmpres.size() >= times-1 && tmpres[tmpres.size()-times+1] == vec[i])                {                    //只有当tmpres中包含times-1个vec[i]时,才选择vec[i]                    tmpres.push_back(vec[i]);                    helper(vec, i+1, k-1, times, tmpres);                    tmpres.pop_back();                }            }        }    }}; | 
修改算法3:算法3是根据LeetCode:Subsets 算法2修改未来,同理我们也修改LeetCode:SubsetsII 算法2
| 
       1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
      11 
      12 
      13 
      14 
      15 
      16 
      17 
      18 
      19 
      20 
      21 
      22 
      23 
      24 
      25 
      26 
      27 
      28 
      29 
      30 
      31  | 
    
      class 
Solution {public:    void 
combine(vector<int> &vec, int 
k) {        if(k > vec.size())return;        sort(vec.begin(), vec.end());        vector<vector<int> > res(1);//开始加入一个空集        int 
last = vec[0], opResNum = 1;//上一个数字、即将要进行操作的子集数量        for(int 
i = 0; i < vec.size(); ++i)         {            if(vec[i] != last)            {                last = vec[i];                opResNum = res.size();            }            //如果有重复数字,即将操作的子集的数目和上次相同            int 
resSize = res.size();            for(int 
j = resSize-1; j >= resSize - opResNum; j--)            {                res.push_back(res[j]);                res.back().push_back(vec[i]);                if(res.back().size() == k)//找到一个大小为k的组合                {                    for(int 
i = 0; i < res.back().size(); i++)                        cout<<res.back()[i]<<" ";                    cout<<endl;                }            }        }    }}; | 
对于算法4和算法5,都是基于二进制思想,这种解法不适用与包含重复元素的情况
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3695463.html
从n个元素中选择k个的所有组合(包含重复元素),布布扣,bubuko.com
原文:http://www.cnblogs.com/TenosDoIt/p/3695463.html