Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Others)
Total Submission(s): 2382 Accepted Submission(s): 750
/*
hdu 3247 AC自动+状压dp+bfs处理
给你n个正常子串,m个病毒子串,求出最短的字符串(包含所有正常子串,不包含病毒串)
因为正常子串只有十个,所以考虑二进制来记录。
即dp[i][j]表示 包含的正常串的状态为i,最后一步的状态为j的最短情况.
然后试了下发现超内存 卒~
然后膜拜大神,发现我们可以预处理出来正常串之间的最短距离. 像这样我们只需要枚举所有的
正常串. 而我原先那个思路需要枚举所有的节点总共需要dp[1<<10][60040]. 而对于通过bfs优化后
我们只需要枚举正常串 最多有11个 -> dp[1<<10][11].
hhh-2016-04-30 14:34:51
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef unsigned long long ll;
typedef unsigned int ul;
const int mod = 20090717;
const int INF = 0x3f3f3f3f;
const int N = 100050;
int cnt;
int n,m;
int dp[1<<10][205];
int G[205][205];
int pos[205];
struct Tire
{
int nex[N][2],fail[N],ed[N];
int root,L;
int newnode()
{
for(int i = 0; i < 2; i++)
nex[L][i] = -1;
ed[L++] = 0;
return L-1;
}
void ini()
{
L = 0,root = newnode();
}
void inser(char buf[],int val)
{
int len = strlen(buf);
int now = root;
for(int i = 0; i < len; i++)
{
int ta = buf[i]-‘0‘;
if(nex[now][ta] == -1)
nex[now][ta] = newnode();
now = nex[now][ta];
}
if(val < 0)
ed[now] = val;
else
ed[now] = (1<<val);
}
void build()
{
queue<int >q;
fail[root] = root;
for(int i = 0; i < 2; i++)
if(nex[root][i] == -1)
nex[root][i] = root;
else
{
fail[nex[root][i]] = root;
q.push(nex[root][i]);
}
while(!q.empty())
{
int now = q.front();
q.pop();
if(ed[fail[now]] < 0)
ed[now] = ed[fail[now]];
else if(ed[now] == 0)
ed[now] = ed[fail[now]];
for(int i = 0; i < 2; i++)
{
if(nex[now][i] == -1)
nex[now][i] = nex[fail[now]][i];
else
{
fail[nex[now][i]] = nex[fail[now]][i];
q.push(nex[now][i]);
}
}
}
}
int dis[N];
void Path(int k)
{
int now;
queue<int >q;
q.push(pos[k]);
memset(dis,-1,sizeof(dis));
dis[pos[k]] = 0;
while(!q.empty())
{
now = q.front();
q.pop();
for(int i =0;i < 2;i++)
{
int t = nex[now][i];
if(dis[t] < 0 && ed[t] >= 0)
{
dis[t] = dis[now]+1;
q.push(t);
}
}
}
for(int i = 0;i < cnt;i++)
{
G[k][i] = dis[pos[i]];
}
}
int Min(int a,int b)
{
if(a < 0)
return b;
else if(b < 0)
return a;
else
return min(a,b);
}
void solve()
{
memset(dp,-1,sizeof(dp));
dp[0][0] = 0;
for(int i = 0;i < (1<<n);i++)
{
for(int j = 0;j < cnt;j++)
{
if(dp[i][j] < 0)
continue;
for(int k = 0;k < cnt;k++)
{
if(G[j][k] < 0)
continue;
int t = (i|ed[pos[k]]);
dp[t][k] = Min(dp[i][j] + G[j][k],dp[t][k]);
}
}
}
int ans = -1;
for(int i = 0;i < cnt;i++)
{
ans = Min(ans,dp[(1<<n)-1][i]);
}
cout << ans <<"\n";
}
};
Tire ac;
char buf[N];
int main()
{
while(scanf("%d%d",&n,&m)==2 && n && m)
{
ac.ini();
for(int i = 0; i < n; i++)
{
scanf("%s",buf);
ac.inser(buf,i);
}
for(int i =0 ; i < m; i++)
{
scanf("%s",buf);
ac.inser(buf,-1);
}
ac.build();
pos[0] = 0;
cnt = 1;
for(int i = 0; i < ac.L; i++)
{
if(ac.ed[i] > 0)
pos[cnt++] = i;
}
memset(G,-1,sizeof(G));
for(int i = 0; i < cnt; i++)
ac.Path(i);
ac.solve();
}
return 0;
}
原文:http://www.cnblogs.com/Przz/p/5449336.html