首页 > 其他 > 详细

函数可导但是导函数不连续的例子

时间:2016-04-24 12:47:53      阅读:567      评论:0      收藏:0      [点我收藏+]

节选自 汪林《实分析中的反例》

在$[0,1]$上定义函数

$$g(x)=x^{2}\sin \frac{1}{x}, x\neq 0$$

补充定义$g(0)=0$, 则函数$g(x)$为连续函数,图形如下。

技术分享

导函数可求得

$$g‘(x)=2x\sin \frac{1}{x}-\cos \frac{1}{x},x \neq 0$$

并且$g‘(0)=0$, 所以$g‘(x)$在$x=0$处并不连续。导函数存在但并非$\mathbb{R}$上连续函数。

技术分享

设$\{r_{n}\}$为闭区间$[0,1]$之间所有的有理数,则函数

$$f(x)=\sum_{n=0}^{\infty}\frac{1}{2^{n}}g(x-r_{n})$$

在$[0,1]$一致收敛

$$f‘(x)=\sum_{n=0}^{\infty}\frac{1}{2^{n}}g’(x-r_{n})$$

在$[0,1]$上的有理数点$r_{n}$上不连续,在$[0,1]$上的无理数点连续。

 

函数可导但是导函数不连续的例子

原文:http://www.cnblogs.com/zhangwenbiao/p/5426699.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!