题目链接:点击打开链接
题意:给一个nXn的矩阵, 每个点有一个值, 让你从(1,1)走到(n,n)走k次, 每次只能向右或者向下走, 走到一个数字, 就得到那个值, 并且这个地方走第二次的时候不会再次获得该值, 求能得到的最大值。
思路:
走k次这限制我们可以用流量来解决, 关键是费用问题, 解决方法是拆点 —— 解决结点容量或者费用的通法。
细节参见代码:
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<stack> #include<bitset> #include<cstdlib> #include<cmath> #include<set> #include<list> #include<deque> #include<map> #include<queue> #define Max(a,b) ((a)>(b)?(a):(b)) #define Min(a,b) ((a)<(b)?(a):(b)) using namespace std; typedef long long ll; typedef long double ld; const ld eps = 1e-9, PI = 3.1415926535897932384626433832795; const int mod = 1000000000 + 7; const int INF = 0x3f3f3f3f; // & 0x7FFFFFFF const int seed = 131; const ll INF64 = ll(1e18); const int maxn = 55; struct Edge { int from, to, cap, flow, cost; }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn*maxn*10]; int inq[maxn*maxn*10]; // 是否在队列中 int d[maxn*maxn*10]; // Bellman-Ford int p[maxn*maxn*10]; // 上一条弧 int a[maxn*maxn*10]; // 可改进量 void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back((Edge){from, to, cap, 0, cost}); edges.push_back((Edge){to, from, 0, 0, -cost}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int s, int t, int& flow, int& cost) { for(int i = 0; i < n; i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); inq[u] = 0; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return false; flow += a[t]; cost += d[t] * a[t]; int u = t; while(u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } // 需要保证初始网络中没有负权圈 int Mincost(int s, int t) { int cost = 0, flow = 0; while(BellmanFord(s, t, flow, cost)); return cost; } }; MCMF g; int T, n, k; struct node { int v, id; }a[maxn][maxn]; int main() { while(~scanf("%d%d",&n,&k)) { int cnt = 0; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { scanf("%d",&a[i][j].v); a[i][j].id = ++cnt; } } g.init(2 * cnt + 10); for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { g.AddEdge(a[i][j].id, a[i][j].id+cnt, 1, -a[i][j].v); g.AddEdge(a[i][j].id, a[i][j].id+cnt, INF, 0); if(i < n) g.AddEdge(a[i][j].id+cnt, a[i+1][j].id, INF, 0); if(j < n) g.AddEdge(a[i][j].id+cnt, a[i][j+1].id, INF, 0); } } int s = 2 * cnt + 1; int t = 2 * cnt + 2; g.AddEdge(s, a[1][1].id, k, 0); g.AddEdge(a[n][n].id+cnt, t, k, 0); printf("%d\n",-g.Mincost(s, t)); } return 0; }
POJ 3422 Kaka's Matrix Travels(拆点+最大流)
原文:http://blog.csdn.net/weizhuwyzc000/article/details/50972744