Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1‘s in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
数字 n执行n=n&(n-1)后,将n的二进制表示中的最低位为1的改为0,其二进制位数减1,
解法一:
直观解法,时间复杂度为0(n*sizeof(int)),
vector<int> countBits(int num) { vector<int> res(num+1); if(num<0) return res; int times=0; for(int i=0;i<=num;i++){ int n=i; times=0; while(n){ times++; n=n&(n-1); } res[i]=times; } return res; }
解法二:
解法一没有利用已经算好的数据,
由n‘=n&(n-1)后,将n的二进制表示中的最低位为1的改为0,其二进制位数减一,也就是bits(n)=bits(n‘)+1,而且n‘<n,
从前往后算,0为0,
vector<int> countBits(int num) { vector<int> res(num+1);//初始值全为0 if(num<0) return res; for(int i=1;i<=num;i++){ res[i]=res[i&(i-1)]+1; } return res; }
原文:http://searchcoding.blog.51cto.com/1335412/1754324