Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / ___2__ ___8__ / \ / 0 _4 7 9 / 3 5For example, the lowest common ancestor (LCA) of nodes
2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==p||root==q)
return root;
if(p->val>q->val)
swap(p,q);
if(root->val > p->val && root->val < q->val)
return root;
TreeNode *node;
if(root->val > max(p->val,q->val))
node=lowestCommonAncestor(root->left,p,q);
if(root->val < min(p->val,q->val))
node=lowestCommonAncestor(root->right,p,q);
return node;
}
};
Lowest Common Ancestor of a Binary Search Tree
原文:http://www.cnblogs.com/zhxshseu/p/5284969.html