The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
#. Find indices of non-zero elements from [1,2,0,0,4,0]
   .. code:: python
      # Author: Somebody
      print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
Import the numpy package under the name np (★☆☆)
import numpy as np
Print the numpy version and the configuration (★☆☆)
print(np.__version__)
np.__config__.show()
Create a null vector of size 10 (★☆☆)
Z = np.zeros(10)
print(Z)
How to get the documentation of the numpy add function from the command line ? (★☆☆)
python -c "import numpy; numpy.info(numpy.add)"
Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
Z = np.zeros(10)
Z[4] = 1
print(Z)
Create a vector with values ranging from 10 to 49 (★☆☆)
Z = np.arange(10,50)
print(Z)
Reverse a vector (first element becomes last) (★☆☆)
Z = np.arange(50)
Z = Z[::-1]
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
Z = np.arange(9).reshape(3,3)
print(Z)
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
Create a 3x3 identity matrix (★☆☆)
Z = np.eye(3)
print(Z)
Create a 3x3x3 array with random values (★☆☆)
Z = np.random.random((3,3,3))
print(Z)
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)
Create a random vector of size 30 and find the mean value (★☆☆)
Z = np.random.random(30)
m = Z.mean()
print(m)
Create a 2d array with 1 on the border and 0 inside (★☆☆)
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0
What is the result of the following expression ? (★☆☆)
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
0.3 == 3 * 0.1
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1
Z[::2,1::2] = 1
print(Z)
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?
print(np.unravel_index(100,(6,7,8)))
Create a checkerboard 8x8 matrix using the tile function (★☆☆)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)
Normalize a 5x5 random matrix (★☆☆)
Z = np.random.random((5,5))
Zmax, Zmin = Z.max(), Z.min()
Z = (Z - Zmin)/(Zmax - Zmin)
print(Z)
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
print(Z)
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)
Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
def generate():
    for x in xrange(10):
        yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
Z = np.linspace(0,1,12,endpoint=True)[1:-1]
print(Z)
Create a random vector of size 10 and sort it (★★☆)
Z = np.random.random(10)
Z.sort()
print(Z)
Consider two random array A anb B, check if they are equal (★★☆)
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
equal = np.allclose(A,B)
print(equal)
Make an array immutable (read-only) (★★☆)
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)
Create random vector of size 10 and replace the maximum value by 0 (★★☆)
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)
Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)
Z = np.zeros((10,10), [(‘x‘,float),(‘y‘,float)])
Z[‘x‘], Z[‘y‘] = np.meshgrid(np.linspace(0,1,10),
                             np.linspace(0,1,10))
print(Z)
Print the minimum and maximum representable value for each numpy scalar type (★★☆)
for dtype in [np.int8, np.int32, np.int64]:
   print(np.iinfo(dtype).min)
   print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
   print(np.finfo(dtype).min)
   print(np.finfo(dtype).max)
   print(np.finfo(dtype).eps)
How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan)
Z = np.zeros((25,25))
print(Z)
How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan)
Z = np.zeros((25,25))
print(Z)
How to find the closest value (to a given scalar) in an array ? (★★☆)
Z = np.arange(100)
v = np.random.uniform(0,100)
index = (np.abs(Z-v)).argmin()
print(Z[index])
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
 Z = np.zeros(10, [ (‘position‘, [ (‘x‘, float, 1),
                                   (‘y‘, float, 1)]),
                    (‘color‘,    [ (‘r‘, float, 1),
                                   (‘g‘, float, 1),
                                   (‘b‘, float, 1)])])
print(Z)
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D)
# Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial
Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)
How to convert a float (32 bits) array into an integer (32 bits) in place ?
Z = np.arange(10, dtype=np.int32)
Z = Z.astype(np.float32, copy=False)
Consider the following file:
1,2,3,4,5 6,,,7,8 ,,9,10,11
How to read it ? (★★☆)
Z = np.genfromtxt("missing.dat", delimiter=",")
What is the equivalent of enumerate for numpy arrays ? (★★☆)
Z = np.arange(9).reshape(3,3)
for index, value in np.ndenumerate(Z):
    print(index, value)
for index in np.ndindex(Z.shape):
    print(index, Z[index])
Generate a generic 2D Gaussian-like array (★★☆)
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)
How to randomly place p elements in a 2D array ? (★★☆)
# Author: Divakar
n = 10
p = 3
Z = np.zeros((n,n))
np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
Subtract the mean of each row of a matrix (★★☆)
# Author: Warren Weckesser
X = np.random.rand(5, 10)
# Recent versions of numpy
Y = X - X.mean(axis=1, keepdims=True)
# Older versions of numpy
Y = X - X.mean(axis=1).reshape(-1, 1)
How to I sort an array by the nth column ? (★★☆)
# Author: Steve Tjoa
Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])
How to tell if a given 2D array has null columns ? (★★☆)
# Author: Warren Weckesser
Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())
Find the nearest value from a given value in an array (★★☆)
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)
# Author: Brett Olsen
Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)
How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)
# Author: Alan G Isaac
X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,X)
print(F)
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)
# Author: Nadav Horesh
w,h = 16,16
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
n = len(np.unique(F))
print(np.unique(I))
Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)
A = np.random.randint(0,10,(3,4,3,4))
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)
# Author: Jaime Fernández del Río
D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S, weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)
How to get the diagonal of a dot product ? (★★★)
# Author: Mathieu Blondel
# Slow version
np.diag(np.dot(A, B))
# Fast version
np.sum(A * B.T, axis=1)
# Faster version
np.einsum("ij,ji->i", A, B).
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)
# Author: Warren Weckesser
Z = np.array([1,2,3,4,5])
nz = 3
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0[::nz+1] = Z
print(Z0)
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)
A = np.ones((5,5,3))
B = 2*np.ones((5,5))
print(A * B[:,:,None])
How to swap two rows of an array ? (★★★)
# Author: Eelco Hoogendoorn
A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print(A)
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
# Author: Nicolas P. Rougier
faces = np.random.randint(0,100,(10,3))
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
G = F.view( dtype=[(‘p0‘,F.dtype),(‘p1‘,F.dtype)] )
G = np.unique(G)
print(G)
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)
# Author: Jaime Fernández del Río
C = np.bincount([1,1,2,3,4,4,6])
A = np.repeat(np.arange(len(C)), C)
print(A)
How to compute averages using a sliding window over an array ? (★★★)
# Author: Jaime Fernández del Río
def moving_average(a, n=3) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n
Z = np.arange(20)
print(moving_average(Z, n=3))
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks
def rolling(a, window):
    shape = (a.size - window + 1, window)
    strides = (a.itemsize, a.itemsize)
    return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print(Z)
How to negate a boolean, or to change the sign of a float inplace ? (★★★)
# Author: Nathaniel J. Smith
Z = np.random.randint(0,2,100)
np.logical_not(arr, out=arr)
Z = np.random.uniform(-1.0,1.0,100)
np.negative(arr, out=arr)
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)
def distance(P0, P1, p):
    T = P1 - P0
    L = (T**2).sum(axis=1)
    U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
    U = U.reshape(len(U),1)
    D = P0 + U*T - p
    return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p  = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)
# Author: Italmassov Kuanysh
# based on distance function from previous question
P0 = np.random.uniform(-10, 10, (10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10, 10, (10,2))
print np.array([distance(P0,P1,p_i) for p_i in p])
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)
# Author: Nicolas Rougier
Z = np.random.randint(0,10,(10,10))
shape = (5,5)
fill  = 0
position = (1,1)
R = np.ones(shape, dtype=Z.dtype)*fill
P  = np.array(list(position)).astype(int)
Rs = np.array(list(R.shape)).astype(int)
Zs = np.array(list(Z.shape)).astype(int)
R_start = np.zeros((len(shape),)).astype(int)
R_stop  = np.array(list(shape)).astype(int)
Z_start = (P-Rs//2)
Z_stop  = (P+Rs//2)+Rs%2
R_start = (R_start - np.minimum(Z_start,0)).tolist()
Z_start = (np.maximum(Z_start,0)).tolist()
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
z = [slice(start,stop