题目大意:n个小伙伴进行猜拳有戏,除了一个比较聪明的家伙以外,其他人只会出单一的一种,给出m中猜拳的结果,要求找出那个比较聪明的小伙伴序号,并且输出在第几次猜拳可以确定。(注意<,>,=前后可能有空格)
解题思路:枚举每个人作为最聪明的家伙,如果将他所有的关系都剔除后还有矛盾的情况,则说明他不是要找的那个家伙,如果存在两个以上,则是不可能的。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 2005; const int M = 505; int n, m, f[M], r[N]; int u[N], v[N], s[N], vis[N]; int getfar(int x) { if (x != f[x]) { int t = f[x]; f[x] = getfar(f[x]); r[x] = (r[x] + r[t])%3; } return f[x]; } void read () { char ch; for (int i = 0; i < m; i++) { scanf("%d", &u[i]); while ((ch = getchar()) == ‘ ‘) ; scanf("%d", &v[i]); if (ch == ‘=‘) s[i] = 0; else if (ch == ‘<‘) s[i] = 1; else s[i] = 2; } } void init () { for (int i = 0; i <= n; i++) f[i] = i; memset(r, 0, sizeof(r)); } void solve () { int ans = -1, rec = 0; for (int i = 0; i < n; i++) { init (); int j, tmp = 0; for (j = 0; j < m; j++) { int a = u[j]; int b = v[j]; if (a == i || b == i) continue; int p = getfar(a); int q = getfar(b); if (p == q) { if (r[a] != (r[b] + s[j])%3) { tmp = j + 1; break; } } else { f[p] = q; r[p] = (r[b] + s[j] - r[a] + 3) % 3; } } if (j == m) { if (ans == -1) { ans = i; } else { printf("Can not determine\n"); return; } } else rec = max(rec, tmp); } if (ans == -1) printf("Impossible\n"); else printf("Player %d can be determined to be the judge after %d lines\n" , ans , rec); } int main () { while (scanf("%d%d", &n, &m) == 2) { read (); solve (); } return 0; }
hdu 1796 How many integers can you find 容斥原理,布布扣,bubuko.com
hdu 1796 How many integers can you find 容斥原理
原文:http://blog.csdn.net/t1019256391/article/details/23930147