直接按求可行流的方法建图,然后求一遍最大流,判断一下就可以了。。
#include<algorithm> #include<iostream> #include<cstring> #include<vector> #include<cstdio> #include<cmath> #include<queue> #include<stack> #include<map> #include<set> #define LL long long #define CLR(a, b) memset(a, b, sizeof(a)) using namespace std; const int maxn = 330; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, flow; Edge() {} Edge(int from, int to, int cap, int flow) :from(from), to(to), cap(cap), flow(flow) {} }; bool operator < (const Edge& a, const Edge& b) { return a.from < b.from || (a.from == b.from && a.to < b.to); } struct ISAP { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; // BFS使用 int d[maxn]; // 从起点到i的距离 int cur[maxn]; // 当前弧指针 int p[maxn]; // 可增广路上的上一条弧 int num[maxn]; // 距离标号计数 void AddEdge(int from, int to, int cap) { edges.push_back(Edge(from, to, cap, 0)); edges.push_back(Edge(to, from, 0, 0)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(t); vis[t] = 1; d[t] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]^1]; if(!vis[e.from] && e.cap > e.flow) { vis[e.from] = 1; d[e.from] = d[x] + 1; Q.push(e.from); } } } return vis[s]; } void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } int Augment() { int x = t, a = INF; while(x != s) { Edge& e = edges[p[x]]; a = min(a, e.cap-e.flow); x = edges[p[x]].from; } x = t; while(x != s) { edges[p[x]].flow += a; edges[p[x]^1].flow -= a; x = edges[p[x]].from; } return a; } int Maxflow(int s, int t, int need) { this->s = s; this->t = t; int flow = 0; BFS(); memset(num, 0, sizeof(num)); for(int i = 0; i < n; i++) num[d[i]]++; int x = s; memset(cur, 0, sizeof(cur)); while(d[s] < n) { if(x == t) { flow += Augment(); if(flow >= need) return flow; x = s; } int ok = 0; for(int i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(e.cap > e.flow && d[x] == d[e.to] + 1) // Advance { ok = 1; p[e.to] = G[x][i]; cur[x] = i; // 注意 x = e.to; break; } } if(!ok) // Retreat { int m = n-1; // 初值注意 for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(e.cap > e.flow) m = min(m, d[e.to]); } if(--num[d[x]] == 0) break; num[d[x] = m+1]++; cur[x] = 0; // 注意 if(x != s) x = edges[p[x]].from; } } return flow; } } sol; int row[maxn], col[maxn]; int mx[maxn][maxn], mn[maxn][maxn]; int m, n, c; void gao(int r, int q, int v, int flag) { if(r == 0 && q == 0) { for(int i = 1; i <= m; i ++) for(int j = 1; j <= n; j ++) { if(flag) mx[i][j] = min(mx[i][j], v); else mn[i][j] = max(mn[i][j], v); } } else if(r == 0) { for(int i = 1; i <= m; i ++) { if(flag) mx[i][q] = min(mx[i][q], v); else mn[i][q] = max(mn[i][q], v); } } else if(c == 0) { for(int i = 1; i <= n; i ++) { if(flag) mx[r][i] = min(mx[r][i], v); else mn[r][i] = max(mn[r][i], v); } } else { if(flag) mx[r][q] = min(mx[r][q], v); else mn[r][q] = max(mn[r][q], v); } } bool check(int l, int r) { for(int i = l; i < r; i += 2) { Edge e = sol.edges[i]; if(e.flow < e.cap) return false; } for(int i = 1; i <= m; i ++) for(int j = 1; j <= n; j ++) if(mn[i][j] > mx[i][j]) return false; return true; } void work() { scanf("%d%d", &m, &n); int sumc = 0, sumr = 0; for(int i = 1; i <= m; i ++) scanf("%d", &row[i]), sumr += row[i]; for(int i = 1; i <= n; i ++) scanf("%d", &col[i]), sumc += col[i]; CLR(mn, 0); CLR(mx, INF); scanf("%d", &c); for(int i = 0; i < c; i ++) { int r, q, v; char op[4]; scanf("%d%d%s%d", &r, &q, op, &v); if(op[0] == ‘=‘) { gao(r, q, v, 1); gao(r, q, v, 0); } else if(op[0] == ‘<‘) gao(r, q, v - 1, 1); else gao(r, q, v + 1, 0); } sol.init(n + m + 5); int s = 0, t = n + m + 1, ss = m + n + 2, st = n + m + 3; for(int i = 1; i <= m; i ++) for(int j = 1; j <= n; j ++) { sol.AddEdge(i, m + j, mx[i][j] - mn[i][j]); } for(int i = 1; i <= m; i ++) { sol.AddEdge(ss, i, row[i]); int sum = 0; for(int j = 1; j <= n; j ++) sum += mn[i][j]; sol.AddEdge(i, st, sum); } for(int i = 1; i <= n; i ++) { sol.AddEdge(i + m, st, col[i]); int sum = 0; for(int j = 1; j <= m; j ++) sum += mn[j][i]; sol.AddEdge(ss, i + m, sum); } sol.AddEdge(s, st, sumr); sol.AddEdge(ss, t, sumc); for(int i = 1; i <= m; i ++) sol.AddEdge(s, i, 0); for(int i = 1; i <= n; i ++) sol.AddEdge(i + m, t, 0); sol.AddEdge(t, s, INF); sol.Maxflow(ss, st, INF); if(check(n*m*2, n*m*2+4*n+4*m+4)) { for(int i = 0; i < m*n*2; i += 2) { int r = i/(n*2) + 1, c = i%(n*2)/2 + 1; printf("%d", sol.edges[i].flow + mn[r][c]); if(i % (n * 2) == n*2 - 2) puts(""); else printf(" "); } } else puts("IMPOSSIBLE"); } int main() { int T, flag = false; scanf("%d", &T); while(T --) { if(flag) puts(""); flag = true; work(); } }
poj 2396 Budget(可行流),布布扣,bubuko.com
原文:http://blog.csdn.net/ok_again/article/details/23843891