首页 > 其他 > 详细

Leetcode: Maximum Size Subarray Sum Equals k

时间:2016-01-06 06:44:38      阅读:272      评论:0      收藏:0      [点我收藏+]
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If there isn‘t one, return 0 instead.

Example 1:
Given nums = [1, -1, 5, -2, 3], k = 3,
return 4. (because the subarray [1, -1, 5, -2] sums to 3 and is the longest)

Example 2:
Given nums = [-2, -1, 2, 1], k = 1,
return 2. (because the subarray [-1, 2] sums to 1 and is the longest)

Follow Up:
Can you do it in O(n) time?

Like the other subarray sum problems Lintcode: Subarray Sum closest

Use a HashMap to keep track of the sum from index 0 to index i, use it as the key, and use the current index as the value

build the hashmap: scan from left to write, if the current sum does not exist in the hashmap, put it in. If the current sum does exist in Hashmap, do not replace or add to the older value, simply do not update. Because this value might be the left index of our subarray in later comparison. We are looking for the longest subarray so we want the left index to be the smaller the better. 

Every time we read a number in the array, we check to see if map.containsKey(num-k), if yes, try to update the maxLen.

 1 public class Solution {
 2     public int maxSubArrayLen(int[] nums, int k) {
 3         if (nums==null || nums.length==0) return 0;
 4         HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
 5         map.put(0, -1);
 6         int sum = 0;
 7         int maxLen = Integer.MIN_VALUE;
 8         for (int i=0; i<nums.length; i++) {
 9             sum += nums[i];
10             if (!map.containsKey(sum)) {
11                 map.put(sum, i);
12             }
13             if (map.containsKey(sum-k)) {
14                 int index = map.get(sum-k);
15                 maxLen = Math.max(maxLen, i-index);
16             }
17         }
18         return maxLen==Integer.MIN_VALUE? 0 : maxLen;
19     }
20 }

 

Leetcode: Maximum Size Subarray Sum Equals k

原文:http://www.cnblogs.com/EdwardLiu/p/5104280.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!