Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int row=triangle.size();
if(row==0)
return 0;
vector<int > temp(triangle[row-1].begin(),triangle[row-1].end());
for(int i=row-2;i>-1;i--){
int col=triangle[i].size();
for(int j=0;j<col;j++){
temp[j]=min(temp[j],temp[j+1])+triangle[i][j];
}
}
return temp[0];
}
};
原文:http://www.cnblogs.com/zhoudayang/p/5013227.html