题意:给n个区间及其代价值,问要覆盖[M,E]区间至少要花费多少代价;
解法:线段树维护和查询区间的最小值:
先将所有区间的代价设置为无限大,然后[0,M-1]区间设置为0.将给的n区间按左优先排序,然后进行一趟遍历:第i个区间为[a,b],先查询[a-1,b]区间的最小值min然后更新[a,b]的最小值为Ci+min。最后找到[E,E]区间的最小值就是要覆盖[M,E]区间的最小代价了,若大于等于无限大值则说明中间有段区间无法覆盖;
线段树节点有两个维护量nMin和Allmin;nMin表示此区间内真正的最小值,Allmin表示的是更新此全区间并且没有下放的值(这个是线段树能做到nlogn的关键原因);维护时候只要到达完整区间就停止,查询时候再下放Allmin值;
代码:
#include <iostream> #include <algorithm> #include <numeric> #include <stdio.h> using namespace std; long long MY_MIN=1000000000000; struct CNode { int L,R; long long nMin,Allmin; CNode * pLeft, * pRight; }; CNode Tree[10000000]; int N,M,E; int nCount = 0; void BuildTree(CNode * pRoot, int L,int R) { pRoot->L = L; pRoot->R = R; pRoot->nMin = MY_MIN; pRoot->Allmin = MY_MIN; if ( L != R) { nCount ++; pRoot->pLeft = Tree + nCount; nCount ++; pRoot->pRight = Tree + nCount; BuildTree( pRoot->pLeft, L, ( L + R )/2); BuildTree( pRoot->pRight, (L + R) / 2 + 1,R); } } void Insertmin(CNode * pRoot, int s, int e,long long v) { pRoot->nMin = min(pRoot->nMin,v); if( s == pRoot->L && e == pRoot->R) { pRoot->Allmin = min(pRoot->Allmin,v); return ; } if( e <= (pRoot->L + pRoot->R) / 2 ) Insertmin(pRoot->pLeft, s,e,v); else if( s >= (pRoot->L + pRoot->R) / 2 + 1) Insertmin(pRoot->pRight, s,e,v); else { Insertmin(pRoot->pLeft, s,(pRoot->L + pRoot->R) / 2,v); Insertmin(pRoot->pRight, (pRoot->L + pRoot->R) / 2+1 ,e,v); } } long long Query(CNode * pRoot, int s, int e) { if( s == pRoot->L && e == pRoot->R) { return pRoot->nMin; } Insertmin(pRoot->pLeft, pRoot->L,(pRoot->L + pRoot->R) / 2,pRoot->Allmin); Insertmin(pRoot->pRight, (pRoot->L + pRoot->R) / 2+1 ,pRoot->R,pRoot->Allmin); if( e <= (pRoot->L + pRoot->R) / 2 ) return Query(pRoot->pLeft, s,e); else if( s >= (pRoot->L + pRoot->R) / 2 + 1) return Query(pRoot->pRight, s,e); else { return min(Query(pRoot->pLeft, s,(pRoot->L + pRoot->R) / 2),Query(pRoot->pRight, (pRoot->L + pRoot->R) / 2+1 ,e)); } } struct point { int left,right; int cost; } points[10010]; bool operator<(point a,point b) { if(a.left!=b.left) return a.left<b.left; return a.right<b.right; } int main() { BuildTree(Tree,0, 100100); scanf("%d%d%d",&N,&M,&E);M++,E++; Insertmin(Tree,0,M-1,0); for(int i=0;i<N;i++) scanf("%d%d%d",&points[i].left,&points[i].right,&points[i].cost),points[i].left++,points[i].right++; sort(points,points+N); for(int i=0;i<N;i++){ Insertmin(Tree,points[i].left,points[i].right,points[i].cost+Query(Tree,points[i].left-1,points[i].right)); } long long ans=Query(Tree,E,E); if(ans>=MY_MIN) cout<<"-1\n"; else cout<<ans<<endl; return 0; } /* 4 0 4 0 4 4 0 2 3 3 4 2 0 0 1 */
poj3171(线段树区间覆盖最小代价),布布扣,bubuko.com
原文:http://blog.csdn.net/xiefubao/article/details/23177035