题目传送门
题意:
分析:
/************************************************
* Author :Running_Time
* Created Time :2015/11/2 星期一 20:33:38
* File Name :POJ_2074.cpp
************************************************/
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point { //点的定义
double x, y;
Point () {}
Point (double x, double y) : x (x), y (y) {}
Point operator + (const Point &r) const { //向量加法
return Point (x + r.x, y + r.y);
}
Point operator - (const Point &r) const { //向量减法
return Point (x - r.x, y - r.y);
}
Point operator * (double p) const { //向量乘以标量
return Point (x * p, y * p);
}
Point operator / (double p) const { //向量除以标量
return Point (x / p, y / p);
}
bool operator < (const Point &r) const { //点的坐标排序
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const { //判断同一个点
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
double x, y;
scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point line_line_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double point_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double point_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式
if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_line_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool can_seg_seg_inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool can_line_seg_inter(Point a1, Point a2, Point b1, Point b2) { //判断直线与线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1);
return dcmp (c1 * c2) <= 0;
}
bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式
return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
double area_poly(Point *p, int n) { //多边形面积,叉积
double ret = 0;
for (int i=1; i<n-1; ++i) {
ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
}
return ret / 2;
}
struct Line {
Point a, b;
Line () {}
Line (Point a, Point b) : a (a), b (b) {}
bool operator < (const Line &r) const {
return a.x < r.a.x || (a.x == r.a.x && b.x < r.b.x);
}
};
int main(void) {
vector<Line> ls;
Line h, p;
double x1, x2, y;
while (scanf ("%lf%lf%lf", &x1, &x2, &y) == 3) {
if (!x1 && !x2 && !y) break;
h.a = Point (x1, y); h.b = Point (x2, y);
scanf ("%lf%lf%lf", &x1, &x2, &y);
p.a = Point (x1, y); p.b = Point (x2, y);
int n; scanf ("%d", &n);
ls.clear ();
for (int i=1; i<=n; ++i) {
scanf ("%lf%lf%lf", &x1, &x2, &y);
ls.push_back (Line (Point (x1, y), Point (x2, y)));
}
sort (ls.begin (), ls.end ());
double ans = n == 0 ? p.b.x - p.a.x : 0, x3, x4;
bool flag = true;
for (int i=0; i<n-1; ++i) {
if (dcmp (ls[i].b.x - ls[i+1].a.x) >= 0 || dcmp (ls[i].b.y - h.a.y) >= 0
|| dcmp (ls[i+1].a.y - h.a.y) >= 0) continue;
x3 = line_line_inter (h.a, h.a - ls[i].b, p.a, p.b).x;
x4 = line_line_inter (h.b, h.b - ls[i+1].a, p.a, p.b).x;
if (dcmp (x3 - x4) >= 0) continue;
flag = true;
for (int j=0; j<i; ++j) {
if (can_line_seg_inter (h.a, ls[i].b, ls[j].a, ls[j].b)
|| can_line_seg_inter (h.b, ls[i+1].a, ls[j].a, ls[j].b)) {
flag = false; break;
}
}
if (flag) ans = max (ans, x4 - x3);
}
x3 = line_line_inter (h.a, h.a - ls[n-1].b, p.a, p.b).x;
if (x3 < p.b.x) {
flag = true;
for (int i=0; i<n-1; ++i) {
if (can_line_seg_inter (h.a, ls[n-1].b, ls[i].a, ls[i].b)) {
flag = false; break;
}
}
if (flag) ans = max (ans, p.b.x - x3);
}
x4 = line_line_inter (h.b, h.b - ls[0].a, p.a, p.b).x;
if (x4 > p.a.x) {
flag = true;
for (int i=1; i<n; ++i) {
if (can_line_seg_inter (h.b, ls[0].a, ls[i].a, ls[i].b)) {
flag = false; break;
}
}
if (flag) ans = max (ans, x4 - p.a.x);
}
if (dcmp (ans - 0) == 0) puts ("No View");
else printf ("%.2f\n", ans);
}
//cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}
简单几何(WA中) POJ 2074 Line of Sight
原文:http://www.cnblogs.com/Running-Time/p/4931459.html