首页 > 其他 > 详细

一道反常积分的计算题

时间:2014-04-07 12:13:08      阅读:506      评论:0      收藏:0      [点我收藏+]

计算

bubuko.com,布布扣+bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣

解答:本题可以利用一个结论

bubuko.com,布布扣+bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣p?1bubuko.com,布布扣bubuko.com,布布扣1+xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx=Γ(p)Γ(1?p)=πbubuko.com,布布扣sin(πp)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,0<p<1bubuko.com,布布扣bubuko.com,布布扣

因此

bubuko.com,布布扣+bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx=1bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣0bubuko.com,布布扣tbubuko.com,布布扣1bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣bubuko.com,布布扣1+tbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dt(t=xbubuko.com,布布扣6bubuko.com,布布扣)=1bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣Γ(1bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣)Γ(5bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣)=1bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣×πbubuko.com,布布扣sin(πbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=πbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

同时也可以用留数来解答:函数$\dfrac{1}{1+{{x}^{6}}}$有6个一阶极点:${{a}_{k}}={{e}^{\frac{\left( 2k+1 \right)\pi }{6}i}}$. 当$k=0,1,2$时,$\operatorname{Im}{{a}_{k}}>0$.

所以有

bubuko.com,布布扣+bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx=1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣?bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx=πibubuko.com,布布扣Imabubuko.com,布布扣kbubuko.com,布布扣>0bubuko.com,布布扣bubuko.com,布布扣Resbubuko.com,布布扣z=abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=πibubuko.com,布布扣k=0bubuko.com,布布扣2bubuko.com,布布扣Resbubuko.com,布布扣z=abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=πi(1bubuko.com,布布扣6abubuko.com,布布扣5bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣6abubuko.com,布布扣5bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣6abubuko.com,布布扣5bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)==πibubuko.com,布布扣bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣(?abubuko.com,布布扣0bubuko.com,布布扣?abubuko.com,布布扣1bubuko.com,布布扣?abubuko.com,布布扣2bubuko.com,布布扣)=πbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣


一道反常积分的计算题,布布扣,bubuko.com

一道反常积分的计算题

原文:http://www.cnblogs.com/ymshuibingcheng/p/3647530.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!