| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 11047 | Accepted: 4725 |
Description
Input
Output
Sample Input
7 7 1 2 2 3 3 4 2 5 4 5 5 6 5 7
Sample Output
2
Hint
1 2 3Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
1 2 3Check some of the routes:
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
#include<stdio.h>
#include<string.h>
#include<stack>
#include<queue>
#include<algorithm>
#include<vector>
#define MAX 20010
#define INF 0x7fffff
using namespace std;
struct node
{
int beg,end,next;
}edge[MAX];
int head[MAX],ans,bridge;
int low[MAX],dfn[MAX],in[MAX];
int dfsclock,ebccnt;
int instack[MAX],ebcno[MAX];
vector<int>newmap[MAX];
stack<int>s;
int n,m;
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
}
void tarjan(int u,int fa)
{
int v;
instack[u]=1;
s.push(u);
low[u]=dfn[u]=++dfsclock;
bool flag=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(flag&&v==fa)
{
flag=false;
continue;
}
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(dfn[u]<low[v])
bridge++;
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
ebccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
ebcno[v]=ebccnt;
if(v==u)
break;
}
}
}
void find()
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(ebcno,0,sizeof(ebcno));
dfsclock=ebccnt=bridge=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i,-1);
}
}
void suodian()
{
int u,v;
memset(in,0,sizeof(in));
for(int i=0;i<ans;i+=2)
{
u=ebcno[edge[i].beg];
v=ebcno[edge[i].end];
if(u!=v)
{
newmap[u].push_back(v);
newmap[v].push_back(u);
in[u]++;
in[v]++;
}
}
}
void solve()
{
int i,j,sum=0;;
for(i=1;i<=ebccnt;i++)
{
if(in[i]==1)
sum++;
}
printf("%d\n",(sum+1)/2);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
find();
suodian();
solve();
}
return 0;
}
poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
原文:http://www.cnblogs.com/tonghao/p/4883831.html