首页 > 编程语言 > 详细

网络科学 - 社区发现 Community structure and detection及其几个实现工具

时间:2015-10-14 14:17:30      阅读:1015      评论:0      收藏:0      [点我收藏+]

首先什么是社区(Community structure)呢?其实并不是指一个网络相互连接的部分,而是一个网络中链接“紧密的部分”,至于怎么定义紧密就有很多方法了。

社区发现算法可以参考下面的博客:博客1,博客2

 那么又该如何动手实现呢??

由于小组主要使用python和R语言编程,所以首先想到networkX这个python包,但是我找了一下里面并没有相应的算法实现。其次是igraph,它提供了python和R语言的接口,然而通过调查,只在R的接口文档里找到了一些社区发现算法,比如几个fast_greedy,等

除了这两个包外,还有一个很不错的包,这个包,小组的成员以前并没有使用过,叫graph-tool,这个包里,实现了一些社区发现的算法。当然在python下还有一些单独的社区发现算法包,但是这些相对独立,这里就不在介绍了

比较好的处理数据与绘制网络图可能要分开,绘制大规模网络图可以使用gephi,使用这个软件可以手动设置可视化的网络图,这样我们使用python等处理网络数据和执行网络算法,使用gephi执行可视化,会是一个很不错的工作流。gephi其实很强大,里面其实也实现了社区发现的一些算法。请参考它的文档。

如果如对比较庞大的数据集。

 

参考文献

  1. http://barabasi.com/networksciencebook/resources/chapter9.html
  2. http://stats.stackexchange.com/questions/2948/how-to-do-community-detection-in-a-weighted-social-network-graph

 

网络科学 - 社区发现 Community structure and detection及其几个实现工具

原文:http://www.cnblogs.com/wybert/p/4875174.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!