首页 > 其他 > 详细

Jacobian矩阵和Hessian矩阵

时间:2015-10-12 22:37:37      阅读:506      评论:0      收藏:0      [点我收藏+]

1.Jacobian矩阵

在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式。假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为向量 $f(x) \in R^m$ ,那么对应的Jacobian矩阵 $J$ 是一个 $m*n$ 的矩阵,其定义如下:

\[\mathbf J = \frac{d\mathbf f}{d\mathbf x} = \begin{bmatrix}\dfrac{\partial \mathbf{f}}{\partial x_1} & \cdots & \dfrac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix}= \begin{bmatrix}\dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_n}\\
    \vdots & \ddots & \vdots\\
    \dfrac{\partial f_m}{\partial x_1} & \cdots & \dfrac{\partial f_m}{\partial x_n} \end{bmatrix}\]

或者,也可以记作:

\[\mathbf J_{i,j} = \frac{\partial f_i}{\partial x_j} .\]

 

2.Hessian矩阵

假设函数 $f:R^n \to R$ 的输入 $x\in R^n$,输出 $f(x)\in R$。如果函数$f$的二阶偏导全部存在,并在定义域内连续,那么函数$f$的Hessian矩阵$H$

Jacobian矩阵和Hessian矩阵

原文:http://www.cnblogs.com/ZJUT-jiangnan/p/4872962.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!