An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb where n=0,1,2,3,... . For this problem, a is a non-negative integer and b is a positive integer.
Write a program that finds all arithmetic progressions of length n in the set S of bisquares. The set of bisquares is defined as the set of all integers of the form p2 + q2 (where p and q are non-negative integers).
| Line 1: | N (3 <= N <= 25), the length of progressions for which to search |
| Line 2: | M (1 <= M <= 250), an upper bound to limit the search to the bisquares with 0 <= p,q <= M. |
5 7
If no sequence is found, a single line reading `NONE‘. Otherwise, output one or more lines, each with two integers: the first element in a found sequence and the difference between consecutive elements in the same sequence. The lines should be ordered with smallest-difference sequences first and smallest starting number within those sequences first.
There will be no more than 10,000 sequences.
1 4 37 4 2 8 29 8 1 12 5 12 13 12 17 12 5 20 2 24
题读了好长时间,代码码了20分钟,一遍过了,开心。 题意:一个长度为N的等差数列a+i*b,等差数列里的所有元素都必须是双平方数(即有p*p+q*q组成的数)。给了数列长度N,和p与q的取值范围(0<=p,q<=M)枚举出所有的a和b。 题解:我先预处理算出了所有的双平方数,然后枚举b和a,判断即可。代码才写了60行 ps:本人大三狗一枚,正在持续更新博客,文章里有任何问题,希望各位网友可以指出。若有疑问也可在评论区留言,我会尽快回复。希望能与各位网友互相学习,谢谢
/*
ID: cxq_xia1
PROG: ariprog
LANG: C++
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int N,M,last;
bool flag[125005];
bool check(int a,int b)
{
int val;
for(int i=0;i<N;i++)
{
val=a+i*b;
if(!flag[val])
return false;
}
return true;
}
int main()
{
freopen("ariprog.in","r",stdin);
freopen("ariprog.out","w",stdout);
bool isOK=false;
cin >> N >> M;
memset(flag,false,sizeof(flag));
for(int i=0;i<=M;i++) //预处理,标记所有的双平方数
{
for(int j=0;j<=M;j++)
{
int tmp=i*i+j*j;
flag[tmp]=true;
}
}
last=M*M+M*M;
for(int b=1;b<=M*M;b++)
{
for(int a=0;a<=M*M;a++)
{
if(a+(N-1)*b>(last))
break;
if(check(a,b))
{
cout << a << " " << b <<endl;
isOK=true;
}
}
}
if(!isOK)
cout << "NONE" <<endl;
return 0;
}
USACO 1.4 Arithmetic Progressions
原文:http://www.cnblogs.com/WillsCheng/p/4796472.html