首页 > 其他 > 详细

关于最优化中的若干问题

时间:2015-09-07 12:47:56      阅读:251      评论:0      收藏:0      [点我收藏+]

    1.最速下降法(也叫梯度下降法)

  负梯度方向、一维搜索步长、上一次的搜索方向和下一次的方向是正交的,所以会产生锯齿现像,因此影响了收敛的速度,特别是当x接近于收敛点的时候。

    2.牛顿法

  采用Hesse矩阵和梯度来迭代x,从而产生一系列x点。要求Hesse矩阵非奇异而且正定,如果不是,则无法保证目标函数值下降和收敛到极小点。如果收敛则为2级收敛,收敛速度较快。

    3.阻尼牛顿法

  阻尼牛顿法,加入一维搜索步长,通过最小化函数值,能够使得迭代目标函数一般有所下降。

    4.拟牛顿法

     上面的方法无法保证Hesse矩阵正定,因此拟牛顿法,通过构造Gk正定矩阵,保证Hesse矩阵正定,再作一维搜索,因此一定可以保证函数值下降和收敛。

关于最优化中的若干问题

原文:http://www.cnblogs.com/hitwhhw09/p/4788447.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!