题意:给定一个n,代表从0到n-1,n个数的排列,如果这个排列中找不到任何一个长度大于2的等差序列,称这个数列为等差级数。输出任意一个等差级数。
方法:
1、举例n=6,0,1,2,3,4,5。分成1,3,5;0,2,4,再连成1,3,5,0,2,4。这样得到的数列前边和后边不会形成等差数列。那么我们一直这样做,类似二分法,知道让子序列<=2时候退出。这时候的序列就满足题意。实现的时候要两个数组互相拷贝。
#include <iostream> #include <iomanip> #include <string> #include <cstring> #include <cstdio> #include <queue> #include <stack> #include <algorithm> #include <cmath> #include <ctime> using namespace std; int n = 0, flag = 0;; const int maxn = 10000+10; int num[maxn], cop[maxn]; void Makelist() { int i = 0; for (i = 0; i < maxn; i++) cop[i] = i; return; } void Input() { int i = 0; cout << n << ":"; for (i = 0; i < n; i++) cout << " " << num[i]; cout << endl; } void Solve(int start, int end) { int i = start, j = start; for (i = 0; i < n; i++) num[i] = cop[i]; if (end - start <= 2) return; for (i = start; i < end; i +=2) cop[j++] = num[i]; for (i = start+1; i < end; i += 2) cop[j++] = num[i]; Solve(start, (start+end+1)/2); Solve((start+end+1)/2, end); } int main() { while (cin >> n && n) { Makelist(); memset(num, 0, sizeof(cop)); Solve(0, n); Input(); } return 0; }
(1)注意每次都要重新打表。
(2)注意后半部分处理时候j应该从start开始,自己纸上演示下最好。
2、TLE代码。(感觉会TLE因为n最大到10000,但是不死心敲了一下果然)
#include <iostream> #include <iomanip> #include <string> #include <cstring> #include <cstdio> #include <queue> #include <stack> #include <algorithm> #include <cmath> #include <ctime> using namespace std; int n = 0, flag = 0;; const int maxn = 10000; int num[maxn], vis[maxn], ans[maxn]; void Makelist() { int i = 0; for (i = 0; i < maxn; i++) num[i] = i; return; } void Input() { int i = 0; cout << n << ":"; for (i = 0; i < n; i++) cout << ans[i] << " "; cout << endl; } int Handle() { int i = 0; for (i = 1; i < n; i++) { if ((ans[i] - ans[i-1]) == (ans[i+1] - ans[i])) return 0; } return 1; } void DFS(int cur) { int i = 0, j = 0; if (cur == n) { if (Handle()) { flag = 1, Input(); } else return; } else { if (flag) return; for(i = 0; i < n; i++) { if (!vis[i]) { vis[i] = 1, ans[cur] = num[i]; DFS(cur+1); vis[i] = 0; } } } } int main() { Makelist(); while (cin >> n && n) { flag = 0; DFS(0); memset(vis, 0, sizeof(vis)); memset(ans, 0, sizeof(ans)); } return 0; }
uva - 11129 - An antiarithmetic permutation(分治),布布扣,bubuko.com
uva - 11129 - An antiarithmetic permutation(分治)
原文:http://blog.csdn.net/u013545222/article/details/22660267