首页 > 其他 > 详细

积分题1之来自G.Han的一道积分题

时间:2014-03-30 09:47:37      阅读:548      评论:0      收藏:0      [点我收藏+]

今天,收到G.Han的提问,第一个是计算积分

bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣lnxbubuko.com,布布扣(xbubuko.com,布布扣2bubuko.com,布布扣+1)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣
bubuko.com,布布扣顿时不明觉厉,然后在宝典《Table of Integrals, Series, and Products》上找到一个更一般的结果:

\[\int_0^\infty  {\ln x\frac{{dx}}{{{{\left( {{a^2} + {b^2}{x^2}} \right)}^n}}}}  = \frac{{\Gamma \left( {n - \frac{1}{2}} \right)\sqrt \pi  }}{{4\left( {n - 1} \right)!{a^{2n - 1}}b}}\left[ {2\ln \frac{a}{{2b}} - C - \psi \left( {n - \frac{1}{2}} \right)} \right]\qquad \text{a>0,bbubuko.com,布布扣>0bubuko.com,布布扣bubuko.com,布布扣 }.\]

其中 Cbubuko.com,布布扣  为Euler-Mascheroni常数, ψ(x)bubuko.com,布布扣 为Digamma 函数,有:

ψ(nbubuko.com,布布扣+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣ψ(1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣=?γbubuko.com,布布扣?2ln2+bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣2k?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?γbubuko.com,布布扣?2ln2.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(1)bubuko.com,布布扣(2)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

第二题是个重要的Steffensen积分不等式

f,gR[a,bubuko.com,布布扣b]bubuko.com,布布扣bubuko.com,布布扣 ,且fbubuko.com,布布扣 [a,b]bubuko.com,布布扣 单减,0<g(x)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 ,求证:

bubuko.com,布布扣bbubuko.com,布布扣b?λbubuko.com,布布扣f(x)dxbubuko.com,布布扣bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣f(x)gbubuko.com,布布扣(x)dxbubuko.com,布布扣a+λbubuko.com,布布扣abubuko.com,布布扣f(x)dxbubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣

积分题1之来自G.Han的一道积分题,布布扣,bubuko.com

积分题1之来自G.Han的一道积分题

原文:http://www.cnblogs.com/Eufisky/p/3633291.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!