首页 > 移动平台 > 详细

POJ 2773 Happy 2006 (分解质因数+容斥+二分 或 欧几里德算法应用)

时间:2015-08-18 22:40:03      阅读:318      评论:0      收藏:0      [点我收藏+]


Happy 2006
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 10309   Accepted: 3566

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5

Source

POJ Monthly--2006.03.26,static

题目链接:http://poj.org/problem?id=2773

题目大意:求第k个与m互质的数

题目分析:两种方法,主流方法是分解质因数+二分+容斥,0ms过,先对m分解质因数,然后二分,二分时用容斥计算1到当前数字与m不互质的数的个数,然后用m减,就是与m互质的数的个数。

#include <cstdio>
#include <cstring>
#define ll long long
int const MAX = 1e6 + 6;
int fac[MAX];
int n, k, cnt;
ll sum;

void get_Factor(int x)
{
    cnt = 0;
    for(int i = 2; i <= x; i++)
    {
        if(x % i == 0)
            fac[cnt ++] = i;
        while(x % i == 0)
            x /= i;
    }
    if(x > 1)
        fac[cnt ++] = x;
}

void DFS(int pos, int num, ll cur, ll x)
{
    if(pos == cnt)
    {
        if(cur == 1)
            return;
        if(num & 1)
            sum += x / cur;
        else
            sum -= x / cur;
        return;
    }
    DFS(pos + 1, num, cur, x);
    DFS(pos + 1, num + 1, cur * fac[pos], x);
    return;
}

ll cal(ll mid)
{
    sum = 0;
    DFS(0, 0, 1, mid);
    return sum;
}

int main()
{
    while(scanf("%d %d", &n, &k) != EOF)
    {
        get_Factor(n);
        ll l = 0, r = 1e17, mid;
        while(l <= r)
        {
            mid = (l + r) >> 1;
            if(mid - cal(mid) < k)
                l = mid + 1;
            else 
                r = mid - 1;
        }
        printf("%lld\n", l);
    }
}


第二种方法利用了欧几里德算法,gcd(a, b) = gcd(b, a % b),令a = km + i,b = m则有:
gcd(km + i, m) = gcd(i, m),说明与m互质的数对m取模有周期性,因此设小于m且与m互质的数有cnt个,第i个为ai,则第m*cnt+i个为m*cnt+ai,其次要注意k整除cnt的时候,取到的实际上是a[cnt]而不是a[0],这个方法跑了2400ms+

#include <cstdio>
int const MAX = 1e6 + 5;
int a[MAX];

int gcd(int a, int b)
{
    while(b)
    {
        int tmp = a;
        a = b;
        b = tmp % b;
    }
    return a;
}

int main()
{
    int m, k;
    while(scanf("%d %d", &m, &k) != EOF)
    {
        if(k == 1)
        {
            printf("1\n");
            continue;
        }
        if(m == 1)
        {
            printf("%d\n", k);
            continue;
        }
        int cnt = 1;
        for(int i = 1; i <= m; i++)
            if(gcd(i, m) == 1)
                a[cnt ++] = i;
        cnt --; 
        if(k % cnt == 0)
            printf("%d\n", (k / cnt - 1) * m + a[cnt]);
        else
            printf("%d\n", (k / cnt) * m + a[k % cnt]);
    }
}



 

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 2773 Happy 2006 (分解质因数+容斥+二分 或 欧几里德算法应用)

原文:http://blog.csdn.net/tc_to_top/article/details/47760517

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!