/* * 单源最短路算法SPFA,时间复杂度O(kE),k在一般情况下不大于2,对于每个顶点使用可以在O(VE)的时间内算出每对节点之间的最短路 * 使用了队列,对于任意在队列中的点连着的点进行松弛,同时将不在队列中的连着的点入队,直到队空则算法结束,最短路求出 * SPFA是Bellman-Ford的优化版,可以处理有负权边的情况 * 对于负环,我们可以证明每个点入队次数不会超过V,所以我们可以记录每个点的入队次数,如果超过V则表示其出现负环,算法结束 * 由于要对点的每一条边进行枚举,故采用邻接表时时间复杂度为O(kE),采用矩阵时时间复杂度为O(kV^2) */ #include<cstdio> #include<vector> #include<queue> #define MAXV 10000 #define INF 1000000000 //此处建议不要过大或过小,过大易导致运算时溢出,过小可能会被判定为真正的距离 using std::vector; using std::queue; struct Edge{ int v; //边权 int to; //连接的点 }; vector<Edge> e[MAXV]; //由于一般情况下E<<V*V,故在此选用了vector动态数组存储,也可以使用链表存储 int dist[MAXV]; //存储到原点0的距离,可以开二维数组存储每对节点之间的距离 int cnt[MAXV]; //记录入队次数,超过V则退出 queue<int> buff; //队列,用于存储在SPFA算法中的需要松弛的节点 bool done[MAXV]; //用于判断该节点是否已经在队列中 int V; //节点数 int E; //边数 bool spfa(const int st){ //返回值:TRUE为找到最短路返回,FALSE表示出现负环退出 for(int i=0;i<V;i++){ //初始化:将除了原点st的距离外的所有点到st的距离均赋上一个极大值 if(i==st){ dist[st]=0; //原点距离为0; continue; } dist[i]=INF; //非原点距离无穷大 } buff.push(st); //原点入队 done[st]=1; //标记原点已经入队 cnt[st]=1; //修改入队次数为1 while(!buff.empty()){ //队列非空,需要继续松弛 int tmp=buff.front(); //取出队首元素 for(int i=0;i<(int)e[tmp].size();i++){ //枚举该边连接的每一条边 Edge *t=&e[tmp][i]; //由于vector的寻址速度较慢,故在此进行一次优化 if(dist[tmp]+(*t).v<dist[(*t).to]){ //更改后距离更短,进行松弛操作 dist[(*t).to]=dist[tmp]+(*t).v; //更改边权值 if(!done[(*t).to]){ //没有入队,则将其入队 buff.push((*t).to); //将节点压入队列 done[(*t).to]=1; //标记节点已经入队 cnt[(*t).to]+=1; //节点入队次数自增 if(cnt[(*t).to]>V){ //已经超过V次,出现负环 while(!buff.empty())buff.pop(); //清空队列,释放内存 return false; //返回FALSE } } } } buff.pop();//弹出队首节点 done[tmp]=0;//将队首节点标记为未入队 } return true; //返回TRUE } //算法结束 int main(){ //主函数 scanf("%d%d",&V,&E); //读入点数和边数 for(int i=0,x,y,l;i<E;i++){ scanf("%d%d%d",&x,&y,&l); //读入x,y,l表示从x->y有一条有向边长度为l Edge tmp; //设置一个临时变量,以便存入vector tmp.v=l; //设置边权 tmp.to=y; //设置连接节点 e[x].push_back(tmp); //将这条边压入x的表中 } if(!spfa(0)){ //出现负环 printf("出现负环,最短路不存在\n"); }else{ //存在最短路 printf("节点0到节点%d的最短距离为%d",V-1,dist[V-1]); } return 0; }
原文:http://blog.csdn.net/u013889359/article/details/22484513