Nearest Common Ancestors
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 20983 | Accepted: 11017 |
Description
Input
Output
Sample Input
2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 11 6 7 10 2 16 3 8 1 16 12 16 7 5 2 3 3 4 3 1 1 5 3 5
Sample Output
4 3
在求解近期公共祖先为问题上,用到的是Tarjan的思想,从根结点開始形成一棵深搜树。处理技巧就是在回溯到结点u的时候。u的子树已经遍历。这时候才把u结点放入合并集合中,这样u结点和全部u的子树中的结点的近期公共祖先就是u了,u和还未遍历的全部u的兄弟结点及子树中的近期公共祖先就是u的父亲结点。
这样我们在对树深度遍历的时候就非常自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的随意一对顶点的公共祖先都是同样的,也就是说这两个集合的近期公共祖先仅仅有一个。时间复杂度为O(n+q),n为节点,q为询问节点对数。
#include"stdio.h"
#include"string.h"
#include"vector"
using namespace std;
#define N 11000
const int inf=1<<20;
vector<int>g[N];
int s,t,n;
int f[N],pre[N],ans[N];
bool vis[N];
int findset(int x)
{
if(x!=f[x])
f[x]=findset(f[x]);
return f[x];
}
int unionset(int a,int b)
{
int x=findset(a);
int y=findset(b);
if(x==y)
return x;
f[y]=x;
return x;
}
void lca(int u)
{
int i,v;
ans[u]=u;
for(i=0;i<g[u].size();i++)
{
v=g[u][i]; //訪问由父节点引出的各个子节点
lca(v);
int x=unionset(u,v); //把父子节点合并
ans[x]=u; //祖先节点记为U
}
vis[u]=1;
if(u==s&&vis[t]) //两个节点依次被訪问标记,第二次訪问时才满足条件
{
printf("%d\n",ans[findset(t)]);
return ;
}
else if(u==t&&vis[s])
{
printf("%d\n",ans[findset(s)]);
return ;
}
}
int main()
{
int i,u,v,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
{
pre[i]=-1; //记录节点I的父节点
f[i]=i; //并查集记录根节点
vis[i]=0;
g[i].clear();
}
for(i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
g[u].push_back(v);
pre[v]=u;
}
scanf("%d%d",&s,&t);
for(i=1;i<=n;i++)
if(pre[i]==-1)
break;
lca(i);
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
原文:http://www.cnblogs.com/lcchuguo/p/4725061.html