首页 > 其他 > 详细

2.x ESL第二章习题2.4

时间:2015-08-12 06:36:21      阅读:137      评论:0      收藏:0      [点我收藏+]

题目

技术分享

准备

  • $x_i\sim N(0,1)$,有$\sum_i^n x_i^2 \sim \chi^2(n)$
    其中$n$称为自由度,卡方分布的均值即其自由度
  • $x_i\sim N(\mu_i,\sigma_i^2)$,有$\sum_i a_ix_i \sim N(\sum_i a_i\mu_i,\sum_ia_i^2\sigma_i^2)$
    n个正态分布变量的线性和,依然符合正态分布
  • 计算向量b投影到向量x上的长度t,$t=|b|cos\theta=|b|\frac{x^Tb}{|x||b|}=\frac{x^T}{|x|}b=a^Tb$
    所以a为单位向量$\sum_i a_i^2=1$

题解

$z=a^Tx$,$Var(z_i)=\sum_j a_j^2Var(x_j)=\sum_j a_j^2=1$<br>
所以$z_i\sim N(0,1)$<br>

距离的平方$d^2\sim \chi^2(p)$,所以平均距离为$\sqrt p$

2.x ESL第二章习题2.4

原文:http://www.cnblogs.com/porco/p/4722885.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!