首页 > 其他 > 详细

POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)

时间:2015-08-10 09:24:57      阅读:212      评论:0      收藏:0      [点我收藏+]
Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 38980   Accepted: 17119

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion



n*n算法

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>

using namespace std;

int n;
int a[1001];
int dp[1010];

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        int maxx = -1;
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=0;i<n;i++)
        {
            dp[i] = 1;
            for(int j=0;j<i;j++)
            {
                if(a[i]>a[j] && dp[j]+1>dp[i])
                {
                    dp[i] = dp[j] + 1;
                }
            }
            if(maxx < dp[i])
            {
                 maxx = dp[i];
            }
        }
        printf("%d\n",maxx);
    }
    return 0;
}




n*logn算法:

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

#define inf 999999

using namespace std;

int n;
int dp[1010];
int a[1010];

int res(int len,int num)
{
    int l = 0,r = len;
    while(l!=r)
    {
        int mid = (l+r)>>1;
        if(dp[mid] == num)
        {
            return mid;
        }
        else if(dp[mid]<num)
        {
            l = mid + 1;
        }
        else if(dp[mid]>num)
        {
            r = mid;
        }
    }
    return l;
}

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        int len = 1;
        dp[0] = -1;
        for(int i=1;i<=n;i++)
        {
            dp[i] = inf;
            int k = res(len,a[i]);
            if(k == len)
            {
                len++;
            }
            dp[k] = a[i];
        }
        printf("%d\n",len-1);
    }
    return 0;
}


版权声明:本文为博主原创文章,如有特殊需要请与博主联系 QQ : 793977586。

POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)

原文:http://blog.csdn.net/yeguxin/article/details/47393391

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!