题意:给出一张要买的东西列表,一排货架,要求在列表上从上到下,在货架上从左到右的选购东西,如果列表上第i件物品在第j个货架上买了,那么第i+1个物品,必须在第j个货架后面买.
求买完所有东西需要的最少价钱.
设dp[i][j]为前i件物品在前j个货架上买需要的最少价钱.
那么有dp[i][j] = min(dp[i - 1][j - 1] + price[j], dp[i][j - 1]).
方程的意思是 min(前i-1件物品在前j-1个货架上买,第i件物品在第j个货架上买, i件物品都在前j-1个货架上买) 这里前提是tag[j]==list[i] 就是j货架上的是第i件物品
注意边界条件:dp[0][i] = 0
用了滚动数组优化空间.
#include <cstdio> #include <memory.h> #include <algorithm> using namespace std; const int MAX = 100010; const int INF = 0x6FFFFFFF; //#define min(a, b) ((a) < (b) ? (a) : (b)) int main(int argc, char const *argv[]){ int tag[MAX]; float price[MAX]; float dp[MAX], tmp[MAX]; int list[101]; int M, N; while(scanf("%d%d", &M, &N) == 2){ if(!M && !N)break; for(int i = 1; i <= M; ++i){ scanf("%d", &list[i]); } for(int i = 1; i <= N; ++i){ scanf("%d%f", &tag[i], &price[i]); } for(int i = 1; i <= N; ++i){ dp[i] = 0; } for(int i = 1; i <= M; ++i){ for(int j = 1; j <= N; ++j){ tmp[j] = INF; } for(int j = i; j <= N; ++j){ if(tag[j] == list[i] && dp[j - 1] != INF){ if(j == 1){ tmp[j] = dp[j - 1] + price[j]; }else{ tmp[j] = min(dp[j - 1] + price[j], tmp[j - 1]); } }else if(j != 1 && tmp[j - 1] != INF){ tmp[j] = tmp[j - 1]; } } memcpy(dp, tmp, sizeof(dp)); } if(dp[N] != INF) printf("%.2lf\n", dp[N]); else printf("Impossible\n"); } return 0; }
ZOJ 1524 Supermarket,布布扣,bubuko.com
原文:http://blog.csdn.net/zxjcarrot/article/details/22279879