首页 > 其他 > 详细

scikit-learn:3.5. Validation curves: plotting scores to evaluate models

时间:2015-07-30 11:32:22      阅读:374      评论:0      收藏:0      [点我收藏+]

参考:http://scikit-learn.org/stable/modules/learning_curve.html



estimator‘s generalization error can be decomposed in terms of bias, variance and noise. The bias of an estimator is its average error for different training sets. The variance of an estimator indicates how sensitive it is to varying training sets. Noise is a property of the data.


具体内容有时间翻译。。。


版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn:3.5. Validation curves: plotting scores to evaluate models

原文:http://blog.csdn.net/mmc2015/article/details/47144197

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!